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INTEREST POINTS



WHAT ARE LOCAL FEATURES?

▪ A pattern or distinct structure found in an image, 
▪ A point, 

▪ An edge, 

▪ A small patch

▪  The pattern or distinct structure differs from its immediate surroundings by
▪ Texture, 

▪ Color, 

▪ Intensity

▪ Examples of local features
▪ Corners, 

▪ Edge pixels,

▪ Blobs



INTEREST POINTS

▪ A point in an image which has a well-defined position and can be robustly 
detected.

▪ Typically associated with a significant change of one or more image properties 
simultaneously (e.g., intensity, color, texture).



INTEREST POINTS AND CORNERS
▪ A corner can be defined as the intersection of two or more edges (special 

case of interest points).

▪ In general, interest points could be: 

▪ Isolated points of local intensity maximum or minimum.

▪ Line endings.

▪ Points on a curve where the curvature is locally maximized. 



WHY ARE INTEREST POINTS USEFUL?
▪For establishing corresponding points between images.

stereo matching

panorama stitching

left camera right camera



WHY EXTRACT FEATURES?
• Motivation: panorama stitching
▪ We have two images – how do we combine them?
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WHY EXTRACT FEATURES?
• Motivation: panorama stitching
▪ We have two images – how do we combine them?

Step 1: extract features
Step 2: match features
Step 3: align images



HOW COULD WE FIND CORRESPONDING 
POINTS?

▪ Need to define local patches surrounding the interest points 
and extract feature descriptors from every patch.

▪ Match feature descriptors to find corresponding points. 
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descriptor
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PROPERTIES OF GOOD FEATURES

▪ Local: features are local, so robust to occlusion and clutter (no prior 
segmentation!).

▪ Accurate: precise localization.

▪ Invariant (or covariant)

▪ Robust: noise, blur, compression, etc. 

         do not have a big impact on the feature.

▪ Distinctive: individual features can be matched to a large database 
of objects.

▪ Efficient: close to real-time performance.

Repeatable



INVARIANCE / COVARIANCE

▪ A function f is invariant under some transformation T if its value 
does not change when the transformation is applied to its 
argument:

   

▪ A function f is covariant when it changes in a way consistent 
with the transformation T:

if f(x) = y then f(T(x))=T(f(x))=T(y)

if f(x) = y then f(T(x)) = y



INTEREST POINT DETECTORS SHOULD 
BE COVARIANT
▪ Features should be detected in corresponding locations 

despite geometric or photometric changes.
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descriptor
feature

descriptor
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INTEREST POINT DESCRIPTORS SHOULD BE 
INVARIANT

Should be similar despite geometric

or photometric transformations
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1. Find a set of   

    distinctive key-

    points 

3. Extract and 

    normalize the    

    region content  

2. Define a region 

    around each 

    keypoint   

4. Compute a local 

    descriptor from the 

    normalized region

5. Match local 

    descriptors

OVERVIEW OF KEYPOINT MATCHING



Detect points that are repeatable and distinctive

GOALS FOR KEYPOINTS



INTEREST POINT CANDIDATES

Use features with gradients in at least two, significantly 

different orientations (e.g., corners, junctions etc)



APERTURE PROBLEM

A point on a line is hard to match. A corner is easier to match

t               t+1 t               t+1



CORNER DETECTION: BASIC IDEA

“flat” region:
no change in all 
directions

“edge”:  
no change along the 
edge direction

“corner”:
significant change in 
all directions

• How does the window change when you shift it?

• Shifting the window in any direction causes a big 
change

Credit: S. Seitz, D. Frolova, D. Simakov



Consider shifting the window W by (u,v)

W

CORNER DETECTION: THE MATH
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Taylor Series expansion of I:

SMALL MOTION ASSUMPTION
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Taylor Series expansion of I:

If the motion (u,v) is small, then first order approximation is good

Plugging this into the formula on the previous slide…

SMALL MOTION ASSUMPTION



Using the small motion assumption, 
replace I with a linear approximation

W

(Shorthand:                  )
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W

• Thus, E(u,v) is locally approximated as a quadratic form

CORNER DETECTION: THE MATH
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The surface E(u,v) is locally approximated by a quadratic form. 

THE SECOND MOMENT MATRIX

Let’s try to understand its shape.

H is a 2 x 2 matrix 

called auto-

correlation or 2nd 

order moment 

matrix



Horizontal edge: 



Horizontal edge: 



Horizontal edge: 

u
v

E(u,v)



Vertical edge: 



Vertical edge: 



Vertical edge: 

u
v

E(u,v)



PROPERTIES OF AUTO-CORRELATION MATRIX

Describes the gradient 

distribution 

(i.e., local structure) inside the

window!



direction of the 
slowest change

direction of the 
fastest change

(max)
-1/2

(min)
-1/2

const][ =








v

u
Hvu

Ellipse equation:
max, min : eigenvalues of H

GENERAL CASE
The shape of H tells us something about the distribution 
of gradients around a pixel

We can visualize H as an ellipse with axis lengths 
determined by the eigenvalues of H and orientation 
determined by the eigenvectors of H

v1

v2



QUICK EIGENVALUE/EIGENVECTOR REVIEW
The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar  is the eigenvalue corresponding to x
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The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar  is the eigenvalue corresponding to x

▪ The eigenvalues are found by solving:

▪ In our case, A = H is a 2x2 matrix, so we have
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The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar  is the eigenvalue corresponding to x

▪ The eigenvalues are found by solving:

▪ In our case, A = H is a 2x2 matrix, so we have

▪ The solution:

Once you know , you find x by solving

QUICK EIGENVALUE/EIGENVECTOR REVIEW



DISTRIBUTION OF FX AND FY

fx

fx fx

fy

fy fy



CORNER DETECTION:  THE MATH

Eigenvalues and eigenvectors of H

• Define shift directions with the smallest and largest change in error

• xmax = direction of largest increase in E

• max = amount of increase in direction xmax

• xmin = direction of smallest increase in E 

• min = amount of increase in direction xmin

xmin

xmax



CORNER DETECTION:  THE MATH
How are max, xmax, min, and xmin relevant for feature detection?

• What’s our feature scoring function?
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Want E(u,v) to be large for small shifts in all directions

• the minimum of E(u,v) should be large, over all unit vectors [u v]

• this minimum is given by the smaller eigenvalue (min) of H
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CORNER DETECTION:  THE MATH
How are max, xmax, min, and xmin relevant for feature detection?

• What’s our feature scoring function?

Want E(u,v) to be large for small shifts in all directions

• the minimum of E(u,v) should be large, over all unit vectors [u v]

• this minimum is given by the smaller eigenvalue (min) of H

J. Shi and C. Tomasi (June 1994). "Good Features to Track,". 9th IEEE Conference on Computer Vision and Pattern Recognition. Springer.

http://citeseer.ist.psu.edu/shi94good.html


INTERPRETING THE EIGENVALUES

1

2

“Corner”

1 and 2 are large,

 1 ~ 2;

E increases in all 

directions

1 and 2 are small;

E is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region

Classification of image points using eigenvalues of M:



CORNER DETECTION SUMMARY
Here’s what you do

• Compute the gradient at each point in the image

• Create the H matrix from the entries in the gradient

• Compute the eigenvalues. 

• Find points with large response (min > threshold)

• Choose those points where min is a local maximum as features

J. Shi and C. Tomasi (June 1994). "Good Features to Track,". 9th IEEE Conference on Computer Vision and Pattern Recognition. Springer.

http://citeseer.ist.psu.edu/shi94good.html
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THE HARRIS OPERATOR
min is a variant of the “Harris operator”1 for feature detection

• The trace is the sum of the diagonals, i.e., trace(H) = h11 + h22

• Called the “Harris Corner Detector” or “Harris Operator”

• Lots of other detectors, this is one of the most popular

1C. Harris and M. Stephens (1988). "A combined corner and edge detector”. Proceedings of the 4th 

Alvey Vision Conference. pp. 147–151.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


THE HARRIS OPERATOR

Harris 
operator



HARRIS DETECTOR EXAMPLE



f value (red high, blue low)



F VALUE (RED HIGH, BLUE LOW)



THRESHOLD (F > VALUE) 



FIND LOCAL MAXIMA OF F



HARRIS FEATURES (IN RED)



WEIGHTING THE DERIVATIVES

▪ In practice, using a simple window W doesn’t work too well

▪ Instead, we’ll weight each derivative value based on its distance 
from the center pixel



HARRIS DETECTOR – RESPONSES 
[HARRIS88]



HARRIS DETECTOR – RESPONSES 
[HARRIS88]

Effect: A very precise 

corner detector.



HARRIS DETECTOR – RESPONSES 
[HARRIS88]



INVARIANCE TO GEOMETRIC/PHOTOMETRIC CHANGES

▪ Is the Harris detector invariant to geometric 
and photometric changes?

▪ Rotation

▪ Scale

▪ Affine 

▪ Intensity change: I(x,y) → a I(x,y) + b



HARRIS DETECTOR: INVARIANCE PROPERTIES

▪Rotation

Ellipse rotates but its shape (i.e. eigenvalues) remains the same



HARRIS DETECTOR: INVARIANCE PROPERTIES

▪Rotation

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response is invariant to image rotation
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▪Affine intensity change: I → aI + b

✓ Only derivatives are used =>                          
invariance to intensity shift I → I + b



HARRIS DETECTOR: INVARIANCE PROPERTIES

▪Affine intensity change: I → aI + b

✓ Only derivatives are used =>                          
invariance to intensity shift I → I + b

✓ Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)



HARRIS DETECTOR: INVARIANCE PROPERTIES

✓ Only derivatives are used =>                          
invariance to intensity shift I → I + b

✓ Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change

▪Affine intensity change: I → aI + b



HARRIS DETECTOR: INVARIANCE PROPERTIES

Corner

▪Scaling
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classified as edges
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HARRIS DETECTOR: INVARIANCE PROPERTIES

All points will be 
classified as edges

Corner

Not invariant to scaling

▪Scaling



SCALE INVARIANT DETECTION
Suppose you’re looking for corners

Key idea:  find scale that gives local maximum of f

▪ in both position and scale

▪ One definition of f: the Harris operator
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SCALE INVARIANT DETECTION
Suppose you’re looking for corners

Key idea:  find scale that gives local maximum of f

▪ in both position and scale

▪ One definition of f: the Harris operator



MULTI-SCALE HARRIS DETECTOR

scale

x

y

 Harris →

• Detects interest points at varying scales.

R(HW) = det(HW(x,y,σI,σD)) – α trace2(HW(x,y,σI,σD))

σn
σD= σn

σI=γσD

σn=knσ



MULTI-SCALE HARRIS DETECTOR (CONT’D)

M. Brown, R. Szeliski, and S. Winder,  “Multi-image matching using multi-scale 

oriented  Patches”,  IEEE Conference on Computer Vision and Pattern Recognition, 

vol. I, pages 510-517, 2005. 

Interest points detected at varying scales:



▪ Design a function F(x,σn) which provides some local measure. 

▪ Select points at which F(x,σn) is maximal over σn. 

T. Lindeberg, "Feature detection with automatic scale selection" International 

Journal of Computer Vision, vol. 30, no. 2, pp 77-116, 1998. 

max of  F(x,σn)

corresponds to 

characteristic scale!

σn

F(x,σn)

AUTOMATIC SCALE SELECTION



AUTOMATIC SCALE SELECTION

K. Grauman, B. Leibe
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How to find corresponding patch sizes?



▪ Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
)),((

1
xIf

mii 
)),((

1
xIf

mii




AUTOMATIC SCALE SELECTION



K. Grauman, B. Leibe
)),((

1
xIf

mii 
)),((

1
xIf

mii




AUTOMATIC SCALE SELECTION
▪ Function responses for increasing scale (scale signature) 



K. Grauman, B. Leibe
)),((

1
xIf

mii 
)),((

1
xIf

mii




AUTOMATIC SCALE SELECTION
▪ Function responses for increasing scale (scale signature) 



K. Grauman, B. Leibe
)),((

1
xIf

mii 
)),((

1
xIf

mii




AUTOMATIC SCALE SELECTION
▪ Function responses for increasing scale (scale signature) 



K. Grauman, B. Leibe
)),((

1
xIf

mii 
)),((

1
xIf

mii




AUTOMATIC SCALE SELECTION
▪ Function responses for increasing scale (scale signature) 



K. Grauman, B. Leibe
)),((

1
xIf

mii 
)),((

1
xIf

mii 

AUTOMATIC SCALE SELECTION
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AUTOMATIC SCALE SELECTION



KEYPOINT DETECTION WITH SCALE SELECTION
We want to extract keypoints with characteristic scale that is covariant 
with the image transformation



BASIC IDEA
Convolve the image with a “blob filter” at multiple scales and look 
for extrema of filter response in the resulting scale space

T. Lindeberg. Feature detection with automatic scale selection. 

IJCV 30(2), pp 77-116, 1998. 

http://www.nada.kth.se/cvap/abstracts/cvap198.html


BLOB FILTER
▪ Laplacian of Gaussian: Circularly symmetric operator for blob 

detection in 2D

2

2

2

2
2

y

g

x

g
g




+




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BLOB DETECTION IN 2D
• Scale-normalized Laplacian of Gaussian:













+




=

2

2

2

2
22

norm
y

g

x

g
g 



BLOB DETECTION IN 2D
• At what scale does the Laplacian achieve a maximum 

response to a binary circle of radius r?

r

image Laplacian
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BLOB DETECTION IN 2D
• At what scale does the Laplacian achieve a maximum 

response to a binary circle of radius r?

• To get maximum response, the zeros of the Laplacian 
have to be aligned with the circle

• The Laplacian is given by (up to scale):
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BLOB DETECTION IN 2D
• At what scale does the Laplacian achieve a maximum 

response to a binary circle of radius r?

• To get maximum response, the zeros of the Laplacian 
have to be aligned with the circle

• The Laplacian is given by (up to scale):

• Therefore, the maximum response occurs at 

r

image

222 2/)(222 )2(  yxeyx +−−+

.2/r=

circle

Laplacian

0



σn

HARRIS-LAPLACE DETECTOR

scale

x

y

 Harris →


 L

o
G

 →

• Multi-scale Harris with scale selection.

• Uses LoG maxima to find characteristic scale.



1. Convolve image with scale-normalized Laplacian at several 
scales

SCALE-SPACE BLOB DETECTOR
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SCALE-SPACE BLOB DETECTOR
1. Convolve image with scale-normalized Laplacian at several 

scales

2. Find maxima of squared Laplacian response in scale-space



SCALE-SPACE BLOB DETECTOR: EXAMPLE

Using Laplacian of Gaussian (LoG)



HARRIS-LAPLACE DETECTOR (CONT’D)
▪ Invariant to:
▪ Scale

▪ Rotation

▪ Translation

▪ Robust to: 
▪ Illumination changes

▪ Limited viewpoint changes

Repeatability



• Approximating the Laplacian with a difference of Gaussians 
by SIFT detector:

( )2 ( , , ) ( , , )xx yyL G x y G x y  = +

( , , ) ( , , )DoG G x y k G x y = −

(Laplacian)

(Difference of Gaussians)

EFFICIENT IMPLEMENTATION (SIFT)



DIFFERENCE-OF-GAUSSIAN (DOG)

K. Grauman, B. Leibe

- =



DOG – EFFICIENT COMPUTATION
▪ Computation in Gaussian scale pyramid

K. Grauman, B. Leibe



Original image
4

1

2=

Sampling with

step  =2







An octave corresponds to doubling the value of  



FIND LOCAL MAXIMA IN POSITION-SCALE SPACE OF 
DIFFERENCE-OF-GAUSSIAN

K. Grauman, B. Leibe

)()(  yyxx LL +











 List of       
    (x, y, s)



RESULTS: DIFFERENCE-OF-GAUSSIAN

K. Grauman, B. Leibe



FEATURE DESCRIPTORS
We know how to detect good points
Next question: How to match them?

Answer: Come up with a descriptor for each 
point, find similar descriptors between the 
two images

?



Image Source: cs231n, Oxford University

CHALLENGES



• Descriptions of the visual 
features

• Described by appearance 
based characteristics such as 
color, shape, etc.

Image 
descriptor     

• Distinctive

• Robust

• Compact

• Low Dimensional

A 
descriptor 

must be 
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➢Over interest regions. 

➢Interest region may be 
➢Grid based, Key-Points or Global based.

Where to compute the descriptors?



LOCAL DESCRIPTORS

• Most available descriptors focus on -
–Edge/gradient information

–Capture texture information

–Exploit local relationship

–Color also play a vital role

–Shape features

–Feature fusion



WIDELY USED LOCAL DESCRIPTORS

• SIFT – Scale Invariant Feature Transform

• LBP – Local Binary Pattern



Basic idea:
• Take 16x16 square window around detected feature

• Compute edge orientation for each pixel

• Throw out weak edges (threshold gradient magnitude)

• Create histogram of surviving edge orientations

SCALE INVARIANT FEATURE TRANSFORM (SIFT)

Adapted from slide by David Lowe

0 2

angle histogram



SIFT DESCRIPTOR
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe



LOCAL DESCRIPTORS: SIFT DESCRIPTOR

[Lowe, ICCV 1999]

Histogram of oriented 

gradients

•  Captures important texture 

   information

•  Robust to small translations /

   affine deformations
K. Grauman, B. Leibe



FEATURE MATCHING
Given a feature in I1, how to find the best match in I2?

1. Define distance function that compares two descriptors

2. Test all the features in I2, find the one with min distance



FEATURE DISTANCE
How to define the difference between two features 

f1, f2?
▪ Simple approach: L2 distance, ||f1 - f2 || 

▪ can give good scores to ambiguous (incorrect) 
matches 
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How to define the difference between two features f1, f2?
• Better approach:  ratio distance = ||f1 - f2 || / || f1 - f2’ || 

• f2 is best SSD match to f1 in I2

• f2’  is  2nd best SSD match to f1 in I2

• gives large values for ambiguous matches

I1 I2

FEATURE DISTANCE



FEATURE MATCHING EXAMPLE
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51 matches
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FEATURE MATCHING EXAMPLE

58 matches



EVALUATING THE RESULTS
How can we measure the performance of a feature matcher?
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TRUE/FALSE POSITIVES

The distance threshold affects performance
▪ True positives = # of detected matches that are correct

▪ Suppose we want to maximize these—how to choose threshold?

▪ False positives = # of detected matches that are incorrect
▪ Suppose we want to minimize these—how to choose threshold?
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How can we measure the performance of a feature matcher?
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EVALUATING THE RESULTS
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How can we measure the performance of a feature matcher?
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ROC curve  (“Receiver Operator Characteristic”)

How can we measure the performance of a feature matcher?
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Variations of SIFT features

• PCA-SIFT

• SURF

• GLOH

• Spin Image

• And Many More



Local Binary Pattern (LBP)

Image Source: scholarpedia

[IEEE TPAMI 2002]

http://vision.stanford.edu/teaching/cs231b_spring1415/papers/lbp.pdf
http://vision.stanford.edu/teaching/cs231b_spring1415/papers/lbp.pdf
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Local Binary Pattern (LBP)

Image Source: Nguyen, D. T., Cho, S. R., & Park, K. R. (2015). Age Estimation-Based Soft Biometrics 

Considering Optical Blurring Based on Symmetrical Sub-Blocks for MLBP. Symmetry, 7(4), 

1882-1913.
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Local Binary Pattern (LBP)

Image Source: 

Mathworks



DALAL-TRIGGS DETECTOR: HOG

1. Extract fixed-sized (64x128 pixel) window at each 
position and scale

2. Compute HOG (histogram of gradient) features within 
each window

3. Score the window with a linear SVM classifier

4. Perform non-maxima suppression to remove 
overlapping detections with lower scores

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

DALAL-TRIGGS DETECTOR: HOG
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HISTOGRAM OF GRADIENTS (HOG)
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HISTOGRAM OF GRADIENTS (HOG)
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Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

HISTOGRAM OF GRADIENTS (HOG)



DETECTION EXAMPLES
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