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adopted from many sources for Academic purposes. Broadly, 
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PREVIOUS CLASS
Image features and categorization
  Choosing right features

      Object, Scene, Action, etc.

Bag-of-visual-words
  Extract local features

  Learn “visual vocabulary”

  Quantize features using visual vocabulary 

  Represent by frequencies of “visual words” 
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K - Nearest Neighbor Classifier

Linear Classifier

Support Vector Machine

Non-linear SVM

Multi-class SVM

Softmax Classifier

TODAY’S CLASS
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f(x) = label of the training example nearest to x

▪ All we need is a distance function for our inputs

▪ No training required!
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• For a new point, find the k closest points from training data

• Vote for class label with labels of the k points 

k = 5

K-NEAREST NEIGHBOR CLASSIFIER



Credit: cs231n, http://cs231n.github.io/classification/

K-NEAREST NEIGHBOR CLASSIFIER

http://cs231n.github.io/classification/


▪ Which classifier is more robust to outliers?

Credit: cs231n, http://cs231n.github.io/classification/

K-NEAREST NEIGHBOR CLASSIFIER

http://cs231n.github.io/classification/
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CHOICE OF K IN KNN CLASSIFIER

Credit: cs231n, 

http://cs231n.github.

io/classification/

Example of a 5-fold cross-validation run for the parameter k. Note that in this 

particular case, the cross-validation suggests that a value of about k = 7 works 

best on this particular CIFAR10 dataset (corresponding to the peak in the plot).

http://cs231n.github.io/classification/
http://cs231n.github.io/classification/


CLASSIFIERS: K-NEAREST NEIGHBOR
“Non-parametric” classifier: the entire training set is 
essentially the model parameters.



CLASSIFIERS: K-NEAREST NEIGHBOR
“Non-parametric” classifier: the entire training set is 
essentially the model parameters.

Pros:

- Very fast at training time

- Flexible: all it requires is a way to compute similarity or 
distances between pairs of features. Applies to many 
different kinds of features.

- Works with any number of classes.

- Works well in practice for large datasets (but see cons)



CLASSIFIERS: K-NEAREST NEIGHBOR
“Non-parametric” classifier: the entire training set is 
essentially the model parameters.

Cons:

- The classifier must remember all of the training data 
and store it for future comparisons with the test data. 

- This is space inefficient because datasets may easily be 
gigabytes in size.

- Slow at test time (need to compute distances between 
test example and every training example)

- Optimum value of K is not known.



LINEAR CLASSIFIERS – 2 CLASS PROBLEM

▪Find a linear function to separate the classes:

 



▪Find a linear function to separate the classes:

 

LINEAR CLASSIFIERS – 2 CLASS PROBLEM



▪Find a linear function to separate the classes:

 f(x) = sign(w  x + b)

LINEAR CLASSIFIERS – 2 CLASS PROBLEM



LINEAR CLASSIFIERS – MORE THAN 2 CLASS

Source: cs231n, http://cs231n.github.io/linear-classify/
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Source: cs231n, http://cs231n.github.io/linear-classify/
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Image      has all of its pixels flattened out to a single column vector of shape [D x 1]. 

Matrix W (of size [K x D]), and vector b (of size [K x 1]) are the parameters.

K is the number of classes.

LINEAR CLASSIFIERS – MORE THAN 2 CLASS

Source: cs231n, http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
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ANALOGY OF IMAGES AS HIGH-DIMENSIONAL POINTS

Source: cs231n, http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/


INTERPRETATION OF LINEAR CLASSIFIERS AS TEMPLATE MATCHING

Example learned weights at the end of learning for CIFAR-10. Note that, for example, the ship 

template contains a lot of blue pixels as expected. This template will therefore give a high score 

once it is matched against images of ships on the ocean with an inner product.

Source: cs231n, http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/


BIAS TRICK

Source: cs231n, http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/


LINEAR CLASSIFIERS
“Parametric” classifier: model defined by a small number of 
parameters (w, b)

Pros:

- Very fast at test time

Cons: 

- Slow at training time: need to estimate the parameters

- Data may not be linearly separable



NEAREST NEIGHBOR VS. LINEAR CLASSIFIERS
• NN pros:

▪ Simple to implement

▪ Decision boundaries not necessarily linear

▪ Works for any number of classes

▪ Nonparametric method

• NN cons:
▪ Need good distance function

▪ Slow at test time, Memory in-efficient

• Linear pros:
▪ Low-dimensional parametric representation

▪ Very fast at test time

• Linear cons:
▪ How to train the linear function?

▪ What if data is not linearly separable?



• When the data is linearly separable, there may be more than one 
separator (hyperplane)

SUPPORT VECTOR MACHINES
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SUPPORT VECTOR MACHINES
• When the data is linearly separable, there may be more than one 

separator (hyperplane)



Which separator

is best?

SUPPORT VECTOR MACHINES
• When the data is linearly separable, there may be more than one 

separator (hyperplane)



SUPPORT VECTOR MACHINES
• Find hyperplane that maximizes the margin between the positive and 

negative examples

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data 

Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
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SUPPORT VECTOR MACHINES

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data 

Mining and Knowledge Discovery, 1998 

• Find hyperplane that maximizes the margin between the positive and 
negative examples

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data 

Mining and Knowledge Discovery, 1998 

SUPPORT VECTOR MACHINES
• Find hyperplane that maximizes the margin between the positive and 

negative examples

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data 

Mining and Knowledge Discovery, 1998 

SUPPORT VECTOR MACHINES
• Find hyperplane that maximizes the margin between the positive and 

negative examples

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
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MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data 

Mining and Knowledge Discovery, 1998 

For support vectors, 1=+ bi wx
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data 

Mining and Knowledge Discovery, 1998 
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data 

Mining and Knowledge Discovery, 1998 

Distance between point 

and hyperplane: ||||

||

w

wx bi +

For support vectors, 1=+ bi wx

Therefore, the margin is  2 / ||w|| 

SUPPORT VECTOR MACHINES
• Find hyperplane that maximizes the margin between the positive and 

negative examples

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


FINDING THE MAXIMUM MARGIN HYPERPLANE

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data 

Mining and Knowledge Discovery, 1998 

1. Maximize margin 2 / ||w||

 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data 

Mining and Knowledge Discovery, 1998 

FINDING THE MAXIMUM MARGIN HYPERPLANE
1. Maximize margin 2 / ||w||

2. Correctly classify all training data:
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1. Maximize margin 2 / ||w||

2. Correctly classify all training data:

▪ Quadratic optimization problem:

 

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data 

Mining and Knowledge Discovery, 1998 
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data 

Mining and Knowledge Discovery, 1998 

FINDING THE MAXIMUM MARGIN HYPERPLANE
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• Separable data:

• Non-separable data:
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▪ Demo: http://cs.stanford.edu/people/karpathy/svmjs/demo
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• General idea: the original input space can always be mapped to some 
higher-dimensional feature space where the training set is separable

Φ:  x → φ(x)

Image source

NONLINEAR SVMS

http://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-vectors-and-training-data-and


• Linearly separable dataset in 1D:

• Non-linearly separable dataset in 1D:

0 x

0 x

Slide credit: Andrew Moore

NONLINEAR SVMS



• Linearly separable dataset in 1D:

• Non-linearly separable dataset in 1D:

• We can map the data to a higher-dimensional 

space:

0 x

0 x

0 x

x2

Slide credit: Andrew Moore

NONLINEAR SVMS



THE KERNEL TRICK
• General idea: the original input space can always be mapped to 

some higher-dimensional feature space where the training set is 
separable

• The kernel trick: instead of explicitly computing the lifting 
transformation φ(x), define a kernel function K such that

                K(x , y) = φ(x) · φ(y)



• Linear SVM decision function:

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data 

Mining and Knowledge Discovery, 1998 
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


• Linear SVM decision function:

• Kernel SVM decision function:

• This gives a nonlinear decision boundary in the original feature 
space

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data 

Mining and Knowledge Discovery, 1998 
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from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html          A. Borbick
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• Also known as the radial basis function (RBF) kernel:
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• Histogram intersection:

• Square root (Bhattacharyya kernel):


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• Pros
▪ Kernel-based framework is very powerful, flexible

▪ Training is convex optimization, globally optimal solution can be 
found

▪ SVMs work very well in practice, even with very small training 
sample sizes

• Cons
▪ No “direct” multi-class SVM, must combine two-class SVMs (e.g., 

with one-vs-others)

▪ Computation, memory (esp. for nonlinear SVMs)

SVMS: PROS AND CONS



• ith example: image 𝑥𝑖 and the label 𝑦𝑖

• Score for the jth class: 𝑠𝑗 = 𝑓(𝑥𝑖 ,𝑊)𝑗

Source: cs231n, http://cs231n.github.io/linear-classify/

MULTICLASS SUPPORT VECTOR MACHINE LOSS

http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/


• ith example: image 𝑥𝑖 and the label 𝑦𝑖

• Score for the jth class: 𝑠𝑗 = 𝑓(𝑥𝑖 ,𝑊)𝑗

• The Multiclass SVM loss for the ith example is then formalized as 
follows:

MarginHinge Loss

Source: cs231n, http://cs231n.github.io/linear-classify/
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• ith example: image 𝑥𝑖 and the label 𝑦𝑖

• Score for the jth class: 𝑠𝑗 = 𝑓(𝑥𝑖 ,𝑊)𝑗

• The Multiclass SVM loss for the ith example is then formalized as 
follows:

MarginHinge Loss

Problem: W is not necessarily unique

Source: cs231n, http://cs231n.github.io/linear-classify/

MULTICLASS SUPPORT VECTOR MACHINE LOSS

http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
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• Regularization Penalty:

MULTICLASS SUPPORT VECTOR MACHINE LOSS

Source: cs231n, http://cs231n.github.io/linear-classify/
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• Regularization Penalty:

• Hinge Loss:

MULTICLASS SUPPORT VECTOR MACHINE LOSS

Source: cs231n, http://cs231n.github.io/linear-classify/
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• Regularization Penalty:

• Hinge Loss:

MULTICLASS SUPPORT VECTOR MACHINE LOSS

Source: cs231n, http://cs231n.github.io/linear-classify/
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HINGE LOSS

Source: cs231n, http://cs231n.github.io/linear-classify/
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SOFTMAX CLASSIFIER
• Interprets the class scores as the unnormalized log probabilities for 

each class and replace the hinge loss with a cross-entropy loss that 
has the form:

𝐿𝑖 = −𝑙𝑜𝑔
𝑒𝑠𝑦𝑖

σ𝑗 𝑒
𝑠𝑗

= −𝑠𝑦𝑖 + 𝑙𝑜𝑔෍
𝑗
𝑒𝑠𝑗

Source: cs231n, http://cs231n.github.io/linear-classify/
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SOFTMAX CLASSIFIER
• Interprets the class scores as the unnormalized log probabilities for 

each class and replace the hinge loss with a cross-entropy loss that 
has the form:

• Softmax Loss:

𝐿𝑖 = −𝑙𝑜𝑔
𝑒𝑠𝑦𝑖

σ𝑗 𝑒
𝑠𝑗

= −𝑠𝑦𝑖 + 𝑙𝑜𝑔෍
𝑗
𝑒𝑠𝑗

Source: cs231n, http://cs231n.github.io/linear-classify/
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HINGE VS CROSS-ENTROPY LOSS

Source: cs231n, http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
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NEXT LECTURE

Neural Networks



   Questions?
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