
Neural Networks

Indian Institute of Information Technology, Allahabad

By

Dr. Satish Kumar Singh & Dr. Shiv Ram Dubey
Computer Vision and Biometrics Lab
Department of Information Technology
Indian Institute of Information Technology, Allahabad

TEAM
Computer Vision and Biometrics Lab (CVBL)

Department of Information Technology

Indian Institute of Information Technology Allahabad

Course Instructors

Dr. Satish Kumar Singh, Associate Professor, IIIT Allahabad (Email: sk.singh@iiita.ac.in)

Dr. Shiv Ram Dubey, Assistant Professor, IIIT Allahabad (Email: srdubey@iiita.ac.in)

DISCLAIMER
The content (text, image, and graphics) used in this slide are

adopted from many sources for Academic purposes. Broadly,

the sources have been given due credit appropriately. However,

there is a chance of missing out some original primary

sources. The authors of this material do not claim any

copyright of such material.

WE HAVE LEARNED SO FOR IN THIS MODULE
Image features and categorization
 Choosing right features

 Object, Scene, Action, etc.

Bag-of-visual-words
 Extract local features

 Learn “visual vocabulary”

 Quantize features using visual vocabulary

 Represent by frequencies of “visual words”

Classifiers
 Nearest neighbor, KNN, Linear classifier,

 SVM, Non-linear SVM, Multi-class SVM,

 Softmax classifier

MarginSupport vectors

Optimization

Gradient Descent & Back propagation

Update rule

Neural networks

TODAY’S CLASS

Optimization is the process of finding the set of parameters W that

minimize the loss function.

Source: http://cs231n.github.io

OPTIMIZATION

Strategy #1:First very bad idea solution: Random search:

 Simply try out many different random weights and keep track of

 what works best.

Strategy #2: Random local search:

 Start out with a random W, generate random changes δW to it and

 if the loss at the changed W+δW is lower, we will perform an update.

Strategy #3: Following the gradients:

 There is no need to randomly search for a good direction:

 this direction is related to the gradient of the loss function.

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

The procedure of repeatedly evaluating the gradient of loss function and

then performing a parameter update.

Vanilla (Original) Gradient Descent:

Mini-batch Gradient Descent (MGD):

Stochastic Gradient Descent (SGD):

Special case of MGD when mini-batch contains only a single example
Source: http://cs231n.github.io

GRADIENT DESCENT

http://cs231n.github.io/neural-networks-1/

Interpretation. Derivatives indicate the rate of change of a function with respect to that

variable surrounding an infinitesimally small region near a particular point:

Source: http://cs231n.github.io

INTERPRETATION OF THE GRADIENT

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

Interpretation. Derivatives indicate the rate of change of a function with respect to that

variable surrounding an infinitesimally small region near a particular point:

INTERPRETATION OF THE GRADIENT

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

Interpretation. Derivatives indicate the rate of change of a function with respect to that

variable surrounding an infinitesimally small region near a particular point:

INTERPRETATION OF THE GRADIENT

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

Interpretation. Derivatives indicate the rate of change of a function with respect to that

variable surrounding an infinitesimally small region near a particular point:

INTERPRETATION OF THE GRADIENT

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

Interpretation. Derivatives indicate the rate of change of a function with respect to that

variable surrounding an infinitesimally small region near a particular point:

INTERPRETATION OF THE GRADIENT

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

Interpretation. Derivatives indicate the rate of change of a function with respect to that

variable surrounding an infinitesimally small region near a particular point:

INTERPRETATION OF THE GRADIENT

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

Interpretation. Derivatives indicate the rate of change of a function with respect to that

variable surrounding an infinitesimally small region near a particular point:

INTERPRETATION OF THE GRADIENT

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

COMPOUND EXPRESSIONS WITH CHAIN RULE

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

COMPOUND EXPRESSIONS WITH CHAIN RULE

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

COMPOUND EXPRESSIONS WITH CHAIN RULE

http://cs231n.github.io/neural-networks-1/

Chain rule:

Source: http://cs231n.github.io

COMPOUND EXPRESSIONS WITH CHAIN RULE

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

COMPOUND EXPRESSIONS WITH CHAIN RULE

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

COMPOUND EXPRESSIONS WITH CHAIN RULE

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

COMPOUND EXPRESSIONS WITH CHAIN RULE

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

COMPOUND EXPRESSIONS WITH CHAIN RULE

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

COMPOUND EXPRESSIONS WITH CHAIN RULE

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

COMPOUND EXPRESSIONS WITH CHAIN RULE

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

COMPOUND EXPRESSIONS WITH CHAIN RULE

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

COMPOUND EXPRESSIONS WITH CHAIN RULE

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

COMPOUND EXPRESSIONS WITH CHAIN RULE

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

COMPOUND EXPRESSIONS WITH CHAIN RULE

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

FORWARD AND BACKWARD PASS

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

FORWARD AND BACKWARD PASS

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

FORWARD AND BACKWARD PASS

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

FORWARD AND BACKWARD PASS

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

FORWARD AND BACKWARD PASS

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

FORWARD AND BACKWARD PASS

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

FORWARD AND BACKWARD PASS

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

FORWARD AND BACKWARD PASS

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

FORWARD AND BACKWARD PASS

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

FORWARD AND BACKWARD PASS

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

FORWARD AND BACKWARD PASS

http://cs231n.github.io/neural-networks-1/

0.40

-0.40

-0.60

0.20

-0.20

0.20

0.20

0.20

0.20 -0.20 -0.53 -0.53 1.00

Modified from: http://cs231n.github.io

SIGMOID EXAMPLE

http://cs231n.github.io/

SVM loss function for a single datapoint (without regularization):

Source: http://cs231n.github.io

SVM LOSS: GRADIENT

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

SVM loss function for a single datapoint (without regularization):

Source: http://cs231n.github.io

SVM LOSS: GRADIENT

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

SVM loss function for a single datapoint (without regularization):

Gradient w.r.t. :

Source: http://cs231n.github.io

SVM LOSS: GRADIENT

http://cs231n.github.io/neural-networks-1/

SVM loss function for a single datapoint (without regularization):

Count of the number of classes that

didn’t meet the desired margin

Gradient w.r.t. :

Source: http://cs231n.github.io

SVM LOSS: GRADIENT

http://cs231n.github.io/neural-networks-1/

SVM loss function for a single datapoint (without regularization):

Gradient w.r.t. :

Gradient for the other rows where :

Source: http://cs231n.github.io

SVM LOSS: GRADIENT

Count of the number of classes that

didn’t meet the desired margin

http://cs231n.github.io/neural-networks-1/

x1

x2

xD

w1

w2

w3

x3

wD

Input

Weights

.

.

.

Output: sign(wx + b)

b

Bias

• Supervised learning of binary classifier

PERCEPTRON

Source: http://cs231n.github.io

SINGLE NEURON AS A LINEAR CLASSIFIER
Binary Softmax classifier (Logistic Regression)

http://cs231n.github.io/

Probability of one of the classes:

Source: http://cs231n.github.io

SINGLE NEURON AS A LINEAR CLASSIFIER
Binary Softmax classifier (Logistic Regression)

http://cs231n.github.io/
http://cs231n.github.io/
http://cs231n.github.io/

Probability of one of the classes:

Probability of the other class would be:

Source: http://cs231n.github.io

SINGLE NEURON AS A LINEAR CLASSIFIER
Binary Softmax classifier (Logistic Regression)

http://cs231n.github.io/

Binary Softmax classifier (Logistic Regression)

Probability of one of the classes:

Probability of the other class would be:

Binary SVM classifier:

Alternatively, we could attach a max-margin hinge loss to the output of

the neuron and train it to become a binary Support Vector Machine.

Source: http://cs231n.github.io

SINGLE NEURON AS A LINEAR CLASSIFIER

http://cs231n.github.io/

Source: http://cs231n.github.io

LOOSE INSPIRATION: HUMAN NEURONS

http://cs231n.github.io/

• Network with a hidden layer:

MULTI-LAYER NEURAL NETWORKS

• Network with a hidden layer:

• Can represent nonlinear functions (provided each perceptron has a
nonlinearity)

MULTI-LAYER NEURAL NETWORKS

• Beyond a single hidden layer:

Source: http://cs231n.github.io

MULTI-LAYER NEURAL NETWORKS

http://cs231n.github.io/neural-networks-1/

First network (left):

No. of neurons (not counting the inputs):

No. of learnable parameters:

Source:

http://cs231n.github.io

SIZING NEURAL NETWORKS

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

First network (left):

No. of neurons (not counting the inputs): 4 + 2 = 6

No. of learnable parameters:

Source:

http://cs231n.github.io

SIZING NEURAL NETWORKS

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

First network (left):

No. of neurons (not counting the inputs): 4 + 2 = 6

No. of learnable parameters: [3 x 4] + [4 x 2] = 20 weights +

 4 + 2 = 6 biases = 26.

Source:

http://cs231n.github.io

SIZING NEURAL NETWORKS

http://cs231n.github.io/neural-networks-1/

First network (left):

No. of neurons (not counting the inputs): 4 + 2 = 6

No. of learnable parameters: [3 x 4] + [4 x 2] = 20 weights +

 4 + 2 = 6 biases = 26.

Second network (right):

No. of neurons (not counting the inputs):

No. of learnable parameters:

 Source:

http://cs231n.github.io

SIZING NEURAL NETWORKS

http://cs231n.github.io/neural-networks-1/

First network (left):

No. of neurons (not counting the inputs): 4 + 2 = 6

No. of learnable parameters: [3 x 4] + [4 x 2] = 20 weights +

 4 + 2 = 6 biases = 26.

Second network (right):

No. of neurons (not counting the inputs): 4 + 4 + 1 = 9

No. of learnable parameters: [3x4]+[4x4]+[4x1] = 32 weights +

 4 + 4 + 1 = 9 biases = 41. Source:

http://cs231n.github.io

SIZING NEURAL NETWORKS

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

MULTI-LAYER NEURAL NETWORKS

http://cs231n.github.io/neural-networks-1/

MULTI-LAYER NETWORK DEMO

http://playground.tensorflow.org/

http://playground.tensorflow.org/

• Find network weights to minimize the error between true and
estimated outputs of training examples:

()
=

−=
N

j

jj fyE
1

2
)()(xw w

TRAINING OF MULTI-LAYER NETWORKS

• Find network weights to minimize the error between true and
estimated outputs of training examples:

• Update weights by gradient descent:
w

ww



−

E


()
=

−=
N

j

jj fyE
1

2
)()(xw w

TRAINING OF MULTI-LAYER NETWORKS

• Find network weights to minimize the error between true and
estimated outputs of training examples:

• Update weights by gradient descent:

• Back-propagation: gradients are computed in the direction from
output to input layers and combined using chain rule

w
ww




−

E


()
=

−=
N

j

jj fyE
1

2
)()(xw w

TRAINING OF MULTI-LAYER NETWORKS

Pros

▪ Flexible and general function approximation framework

▪ Can build extremely powerful models by adding more layers

NEURAL NETWORKS: PROS AND CONS

Pros

▪ Flexible and general function approximation framework

▪ Can build extremely powerful models by adding more layers

Cons

▪ Hard to analyze theoretically (e.g., training is prone to local optima)

▪ Huge amount of training data, computing power may be required to
get good performance

▪ The space of implementation choices are huge (network
architectures, parameters)

NEURAL NETWORKS: PROS AND CONS

ACKNOWLEDGEMENT
Thanks to the following courses and corresponding researchers for making their
teaching/research material online

• Convolutional Neural Networks for Visual Recognition, Stanford University

• Deep Learning, Stanford University

• Introduction to Deep Learning, University of Illinois at Urbana-Champaign

• Introduction to Deep Learning, Carnegie Mellon University

• Natural Language Processing with Deep Learning, Stanford University

• And Many More Publicly Available Resources

NEXT LECTURE
Convolutional Neural Networks

 Questions?

	Slide 1: Neural Networks
	Slide 2
	Slide 3
	Slide 4: We have learned so for in this module
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Multi-Layer network demo
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Acknowledgement
	Slide 68: Next Lecture
	Slide 69

