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DISCLAIMER
The content (text, image, and graphics) used in this slide are 

adopted from many sources for academic purposes. Broadly, 

the sources have been given due credit appropriately. However, 

there is a chance of missing out some original primary 

sources. The authors of this material do not claim any 

copyright of such material. 



CONVOLUTIONAL NEURAL NETWORKS

Source: cs231n, Stanford University



LAYERS USED TO BUILD CONVNETS

Input Layer (Input image)

Convolutional Layer

Non-linearity Layer (such as Sigmoid, Tanh, ReLU, PReLU, ELU, Swish, etc.)

Pooling Layer  (such as Max Pooling, Average Pooling, etc.)

Fully-Connected Layer

Classification Layer (Softmax, etc.)



Activation Functions



NON-LINEARITY LAYER

Source: cs231n, Stanford University



ACTIVATION FUNCTIONS: LINEAR

• Simplest activation 

function

• Does not include any 

non-linearity.



ACTIVATION FUNCTIONS: SIGMOID

Source: cs231n, Stanford University



• Sigmoids saturate and kill gradients.

Source: cs231n, Stanford University

ACTIVATION FUNCTIONS: SIGMOID



Source: cs231n, Stanford University

ACTIVATION FUNCTIONS: SIGMOID



• Sigmoids saturate and kill gradients.

• Sigmoid outputs are not zero-centered.

Source: cs231n, Stanford University

ACTIVATION FUNCTIONS: SIGMOID



ACTIVATION FUNCTIONS: SIGMOID

Source: cs231n, Stanford University

ACTIVATION FUNCTIONS: SIGMOID

Always all positive or all negative

(this is also why you want zero-mean data!)



ACTIVATION FUNCTIONS: SIGMOID

Source: cs231n, Stanford University

Always all positive or all negative

(this is also why you want zero-mean data!)



• Sigmoids saturate and kill gradients.

• Sigmoid outputs are not zero-centered.

• Exp() is a bit compute expensive.
Source: cs231n, Stanford University

ACTIVATION FUNCTIONS: SIGMOID



Source: http://cs231n.github.io

[LeCun et al., 1991]

ACTIVATION FUNCTIONS: TANH

http://cs231n.github.io/neural-networks-1/


Sigmoid

tanh neuron is simply a scaled sigmoid 

neuron

Source: http://cs231n.github.io

[LeCun et al., 1991]

ACTIVATION FUNCTIONS: TANH

http://cs231n.github.io/neural-networks-1/


Like the sigmoid neuron, its activations saturate.

Unlike the sigmoid neuron its output is zero-centered.

In practice the tanh non-linearity is always preferred to the sigmoid 

nonlinearity.

Sigmoid

Source: http://cs231n.github.io

[LeCun et al., 1991]

tanh neuron is simply a scaled sigmoid 

neuron

ACTIVATION FUNCTIONS: TANH

http://cs231n.github.io/neural-networks-1/


Source: http://cs231n.github.io

[Krizhevsky et al., 2012]

ACTIVATION FUNCTIONS: RELU

http://cs231n.github.io/neural-networks-1/


ReLU is 6 times faster  in the convergence of stochastic gradient descent 

compared to the sigmoid/tanh (Krizhevsky et al.).

ReLU is simple as compared to tanh/sigmoid that involve expensive 

operations (exponentials, etc.)

Source: http://cs231n.github.io

[Krizhevsky et al., 2012]

ACTIVATION FUNCTIONS: RELU

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://cs231n.github.io/neural-networks-1/


Source: http://cs231n.github.io

[Krizhevsky et al., 2012]

ReLU is 6 times faster  in the convergence of stochastic gradient descent 

compared to the sigmoid/tanh (Krizhevsky et al.).

ReLU is simple as compared to tanh/sigmoid that involve expensive 

operations (exponentials, etc.)

Dying ReLU problem: a large gradient flowing through a ReLU neuron 

could cause the weights to update in such a way that the neuron will never 

activate on any datapoint again.

ACTIVATION FUNCTIONS: RELU

http://cs231n.github.io/neural-networks-1/
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


Source: cs231n, Stanford University

ACTIVATION FUNCTIONS: RELU



http://playground.tensorflow.org/

MULTI-LAYER NETWORK DEMO WITH ACTIVATION FUNCTION

http://playground.tensorflow.org/


𝑓 𝑥 = ቊ
𝛼𝑥, 𝑥 < 0
𝑥, 𝑥 ≥ 0

𝛼 = 0.01

Source: http://cs231n.github.io

[Mass et al., 2013]

ACTIVATION FUNCTIONS: LEAKY RELU

http://cs231n.github.io/neural-networks-1/


Succeeded in some cases, but the results are not 

always consistent.

Source: http://cs231n.github.io

𝑓 𝑥 = ቊ
𝛼𝑥, 𝑥 < 0
𝑥, 𝑥 ≥ 0

𝛼 = 0.01

ACTIVATION FUNCTIONS: LEAKY RELU

http://cs231n.github.io/neural-networks-1/


In PReLU, the slope in the negative region is considered as a 

parameter of each neuron and learnt from data.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. IEEE international 

conference on computer vision (CVPR).

Source: http://cs231n.github.io

𝑓 𝑥 = ቊ
𝛼𝑥, 𝑥 < 0
𝑥, 𝑥 ≥ 0

ACTIVATION FUNCTIONS: PARAMETRIC RELU

http://cs231n.github.io/neural-networks-1/


- Exponential Linear Unit

Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. "Fast and accurate deep network learning by exponential linear units 

(elus)."  International Conference on Learning Representations (ICLR) 2016.

ACTIVATION FUNCTIONS: ELU



- Exponential Linear Unit

- All benefits of ReLU 

- Negative saturation regime compared with Leaky ReLU adds some robustness 

to noise 

- Computation requires exp() 

Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. "Fast and accurate deep network learning by exponential linear units 

(elus)."  International Conference on Learning Representations (ICLR) 2016.

ACTIVATION FUNCTIONS: ELU



- ReLU is special case of Swish

Ramachandran et al. "Swish: a self-gated activation function."  ICLR Workshops, 2018.

ACTIVATION FUNCTIONS: SWISH



- ReLU is special case of Swish

CIFAR-10 accuracy

Ramachandran et al. "Swish: a self-gated activation function."  ICLR Workshops, 2018.

ACTIVATION FUNCTIONS: SWISH



S.R. Dubey and S. Chakraborty (2020). Average Biased ReLU Based CNN Descriptor for Improved Face Retrieval. Multimedia Tools and Applications. (Springer)

Average Biased ReLU (ABReLU)

average of input volume

ACTIVATION FUNCTIONS: ABRELU



- Use ReLU. Be careful with your learning rates 

- Try out ABReLU/Swish/

- Try out Leaky ReLU but performance might not be 

stable 

- Try out tanh but don’t expect much 

- Don’t use sigmoid

ACTIVATION FUNCTIONS: IN PRACTICE



DATASET PREPARATION  
TRAIN/VAL/TEST SETS



- Split data into train and test, 

- Choose hyperparameters that work best on test data

IN GENERAL PEOPLE DO: TRAIN/TEST



BAD: No idea how algorithm will perform on new data

- Split data into train and test, 

- Choose hyperparameters that work best on test data

IN GENERAL PEOPLE DO: TRAIN/TEST



- Split data into folds,

- Try each fold as validation and average the results

K-FOLD VALIDATION



Useful for small datasets, but not used too frequently in 

deep learning

- Split data into folds,

- Try each fold as validation and average the results

K-FOLD VALIDATION



- Split data into train, val, and test; 

- Choose hyperparameters on val and evaluate on test 

BETTER APPROACH: TRAIN/VAL/TEST SETS



- Split data into train, val, and test; 

- Choose hyperparameters on val and evaluate on test 

Division can be done based on the size of dataset:
• Roughly 10k or 10% whichever is less for val and test sets.

• Rest in train set.

BETTER APPROACH: TRAIN/VAL/TEST SETS



Data Preprocessing



Source: cs231n

DATA PREPROCESSING



DATA PREPROCESSING

Source: cs231n, Stanford University

Always all positive or all negative

(this is also why you want zero-mean data!)

DATA PREPROCESSING



In practice for Images: only centering is preferred 

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet) 

 (mean image = [32,32,3] array) 

- Subtract per-channel mean (e.g. VGGNet, ResNet, etc.)

 (mean along each channel = 3 numbers) 
Source: cs231n

DATA PREPROCESSING



Weight Initialization



Q: what happens when W=Constant init is used?

WEIGHT INITIALIZATION: CONSTANT



Q: what happens when W=Constant init is used?

- Every neuron will compute the 

same output and undergo the 

exact same parameter updates. 

- There is no source of asymmetry 

between neurons if their weights 

are initialized to be the same.

Source: cs231n

WEIGHT INITIALIZATION: CONSTANT



First idea: Small random numbers 

(Gaussian with zero mean and 1e-2 standard deviation)

Symmetry breaking: Weights are different for different 

neurons

Source: cs231n

WEIGHT INITIALIZATION: GAUSSIAN



First idea: Small random numbers 

(Gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with deeper 

networks, 

i.e. Almost all neurons will become zero

 -> gradient diminishing problem.

Symmetry breaking: Weights are different for different 

neurons

Source: cs231n

WEIGHT INITIALIZATION: GAUSSIAN



First idea: Small random numbers 

(Gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with deeper 

networks, 

i.e. Almost all neurons will become zero

 -> gradient diminishing problem.

Symmetry breaking: Weights are different for different 

neurons

Source: cs231n

Increase the standard deviation to 1

WEIGHT INITIALIZATION: GAUSSIAN



First idea: Small random numbers 

(Gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with deeper 

networks, 

i.e. Almost all neurons will become zero

 -> gradient diminishing problem.

Symmetry breaking: Weights are different for different 

neurons

Source: cs231n

Increase the standard deviation to 1
Almost all neurons completely saturated, either -1 or 1. Gradients 

will be all zero.

 -> gradient diminishing problem.

WEIGHT INITIALIZATION: GAUSSIAN



WEIGHT INITIALIZATION: GAUSSIAN

Source: cs231n

WEIGHT INITIALIZATION: GAUSSIAN



WEIGHT INITIALIZATION: GAUSSIAN

Source: cs231n

WEIGHT INITIALIZATION: GAUSSIAN



Source: cs231n

WEIGHT INITIALIZATION: GAUSSIAN



[Glorot et al., 2010]

Source: cs231n

Calibrating the variances with 1/sqrt(fan_in)

W = Τnp. random. randn fan_in, fan_out np. sqrt(fan_in)

Reasonable initialization. 

(Mathematical derivation assumes linear activations)

WEIGHT INITIALIZATION: XAVIER



Source: cs231n

WEIGHT INITIALIZATION: XAVIER



Source: cs231n

WEIGHT INITIALIZATION: XAVIER



Source: cs231n

WEIGHT INITIALIZATION: HE

63



Proper initialization is an active area of research… 

Understanding the difficulty of training deep feedforward neural networks by Glorot and 

Bengio, 2010 

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by 

Saxe et al, 2013 

Random walk initialization for training very deep feedforward networks by Sussillo and 

Abbott, 2014 

Delving deep into rectifiers: Surpassing human-level performance on ImageNet 

classification by He et al., 2015 

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015 

All you need is a good init by Mishkin and Matas, 2015 

…

Source: cs231n
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