
Activation Function, Data and
Weight Setup

Indian Institute of Information Technology, Allahabad

By

Dr. Satish Kumar Singh & Dr. Shiv Ram Dubey
Computer Vision and Biometrics Lab
Department of Information Technology
Indian Institute of Information Technology, Allahabad

TEAM
Computer Vision and Biometrics Lab (CVBL)

Department of Information Technology

Indian Institute of Information Technology Allahabad

Course Instructors

Dr. Satish Kumar Singh, Associate Professor, IIIT Allahabad (Email: sk.singh@iiita.ac.in)

Dr. Shiv Ram Dubey, Assistant Professor, IIIT Allahabad (Email: srdubey@iiita.ac.in)

DISCLAIMER
The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly,

the sources have been given due credit appropriately. However,

there is a chance of missing out some original primary

sources. The authors of this material do not claim any

copyright of such material.

CONVOLUTIONAL NEURAL NETWORKS

Source: cs231n, Stanford University

LAYERS USED TO BUILD CONVNETS

Input Layer (Input image)

Convolutional Layer

Non-linearity Layer (such as Sigmoid, Tanh, ReLU, PReLU, ELU, Swish, etc.)

Pooling Layer (such as Max Pooling, Average Pooling, etc.)

Fully-Connected Layer

Classification Layer (Softmax, etc.)

Activation Functions

NON-LINEARITY LAYER

Source: cs231n, Stanford University

ACTIVATION FUNCTIONS: LINEAR

• Simplest activation

function

• Does not include any

non-linearity.

ACTIVATION FUNCTIONS: SIGMOID

Source: cs231n, Stanford University

• Sigmoids saturate and kill gradients.

Source: cs231n, Stanford University

ACTIVATION FUNCTIONS: SIGMOID

Source: cs231n, Stanford University

ACTIVATION FUNCTIONS: SIGMOID

• Sigmoids saturate and kill gradients.

• Sigmoid outputs are not zero-centered.

Source: cs231n, Stanford University

ACTIVATION FUNCTIONS: SIGMOID

ACTIVATION FUNCTIONS: SIGMOID

Source: cs231n, Stanford University

ACTIVATION FUNCTIONS: SIGMOID

Always all positive or all negative

(this is also why you want zero-mean data!)

ACTIVATION FUNCTIONS: SIGMOID

Source: cs231n, Stanford University

Always all positive or all negative

(this is also why you want zero-mean data!)

• Sigmoids saturate and kill gradients.

• Sigmoid outputs are not zero-centered.

• Exp() is a bit compute expensive.
Source: cs231n, Stanford University

ACTIVATION FUNCTIONS: SIGMOID

Source: http://cs231n.github.io

[LeCun et al., 1991]

ACTIVATION FUNCTIONS: TANH

http://cs231n.github.io/neural-networks-1/

Sigmoid

tanh neuron is simply a scaled sigmoid

neuron

Source: http://cs231n.github.io

[LeCun et al., 1991]

ACTIVATION FUNCTIONS: TANH

http://cs231n.github.io/neural-networks-1/

Like the sigmoid neuron, its activations saturate.

Unlike the sigmoid neuron its output is zero-centered.

In practice the tanh non-linearity is always preferred to the sigmoid

nonlinearity.

Sigmoid

Source: http://cs231n.github.io

[LeCun et al., 1991]

tanh neuron is simply a scaled sigmoid

neuron

ACTIVATION FUNCTIONS: TANH

http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

[Krizhevsky et al., 2012]

ACTIVATION FUNCTIONS: RELU

http://cs231n.github.io/neural-networks-1/

ReLU is 6 times faster in the convergence of stochastic gradient descent

compared to the sigmoid/tanh (Krizhevsky et al.).

ReLU is simple as compared to tanh/sigmoid that involve expensive

operations (exponentials, etc.)

Source: http://cs231n.github.io

[Krizhevsky et al., 2012]

ACTIVATION FUNCTIONS: RELU

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://cs231n.github.io/neural-networks-1/

Source: http://cs231n.github.io

[Krizhevsky et al., 2012]

ReLU is 6 times faster in the convergence of stochastic gradient descent

compared to the sigmoid/tanh (Krizhevsky et al.).

ReLU is simple as compared to tanh/sigmoid that involve expensive

operations (exponentials, etc.)

Dying ReLU problem: a large gradient flowing through a ReLU neuron

could cause the weights to update in such a way that the neuron will never

activate on any datapoint again.

ACTIVATION FUNCTIONS: RELU

http://cs231n.github.io/neural-networks-1/
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Source: cs231n, Stanford University

ACTIVATION FUNCTIONS: RELU

http://playground.tensorflow.org/

MULTI-LAYER NETWORK DEMO WITH ACTIVATION FUNCTION

http://playground.tensorflow.org/

𝑓 𝑥 = ቊ
𝛼𝑥, 𝑥 < 0
𝑥, 𝑥 ≥ 0

𝛼 = 0.01

Source: http://cs231n.github.io

[Mass et al., 2013]

ACTIVATION FUNCTIONS: LEAKY RELU

http://cs231n.github.io/neural-networks-1/

Succeeded in some cases, but the results are not

always consistent.

Source: http://cs231n.github.io

𝑓 𝑥 = ቊ
𝛼𝑥, 𝑥 < 0
𝑥, 𝑥 ≥ 0

𝛼 = 0.01

ACTIVATION FUNCTIONS: LEAKY RELU

http://cs231n.github.io/neural-networks-1/

In PReLU, the slope in the negative region is considered as a

parameter of each neuron and learnt from data.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. IEEE international

conference on computer vision (CVPR).

Source: http://cs231n.github.io

𝑓 𝑥 = ቊ
𝛼𝑥, 𝑥 < 0
𝑥, 𝑥 ≥ 0

ACTIVATION FUNCTIONS: PARAMETRIC RELU

http://cs231n.github.io/neural-networks-1/

- Exponential Linear Unit

Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. "Fast and accurate deep network learning by exponential linear units

(elus)." International Conference on Learning Representations (ICLR) 2016.

ACTIVATION FUNCTIONS: ELU

- Exponential Linear Unit

- All benefits of ReLU

- Negative saturation regime compared with Leaky ReLU adds some robustness

to noise

- Computation requires exp()

Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. "Fast and accurate deep network learning by exponential linear units

(elus)." International Conference on Learning Representations (ICLR) 2016.

ACTIVATION FUNCTIONS: ELU

- ReLU is special case of Swish

Ramachandran et al. "Swish: a self-gated activation function." ICLR Workshops, 2018.

ACTIVATION FUNCTIONS: SWISH

- ReLU is special case of Swish

CIFAR-10 accuracy

Ramachandran et al. "Swish: a self-gated activation function." ICLR Workshops, 2018.

ACTIVATION FUNCTIONS: SWISH

S.R. Dubey and S. Chakraborty (2020). Average Biased ReLU Based CNN Descriptor for Improved Face Retrieval. Multimedia Tools and Applications. (Springer)

Average Biased ReLU (ABReLU)

average of input volume

ACTIVATION FUNCTIONS: ABRELU

- Use ReLU. Be careful with your learning rates

- Try out ABReLU/Swish/

- Try out Leaky ReLU but performance might not be

stable

- Try out tanh but don’t expect much

- Don’t use sigmoid

ACTIVATION FUNCTIONS: IN PRACTICE

DATASET PREPARATION
TRAIN/VAL/TEST SETS

- Split data into train and test,

- Choose hyperparameters that work best on test data

IN GENERAL PEOPLE DO: TRAIN/TEST

BAD: No idea how algorithm will perform on new data

- Split data into train and test,

- Choose hyperparameters that work best on test data

IN GENERAL PEOPLE DO: TRAIN/TEST

- Split data into folds,

- Try each fold as validation and average the results

K-FOLD VALIDATION

Useful for small datasets, but not used too frequently in

deep learning

- Split data into folds,

- Try each fold as validation and average the results

K-FOLD VALIDATION

- Split data into train, val, and test;

- Choose hyperparameters on val and evaluate on test

BETTER APPROACH: TRAIN/VAL/TEST SETS

- Split data into train, val, and test;

- Choose hyperparameters on val and evaluate on test

Division can be done based on the size of dataset:
• Roughly 10k or 10% whichever is less for val and test sets.

• Rest in train set.

BETTER APPROACH: TRAIN/VAL/TEST SETS

Data Preprocessing

Source: cs231n

DATA PREPROCESSING

DATA PREPROCESSING

Source: cs231n, Stanford University

Always all positive or all negative

(this is also why you want zero-mean data!)

DATA PREPROCESSING

In practice for Images: only centering is preferred

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet)

 (mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet, ResNet, etc.)

 (mean along each channel = 3 numbers)
Source: cs231n

DATA PREPROCESSING

Weight Initialization

Q: what happens when W=Constant init is used?

WEIGHT INITIALIZATION: CONSTANT

Q: what happens when W=Constant init is used?

- Every neuron will compute the

same output and undergo the

exact same parameter updates.

- There is no source of asymmetry

between neurons if their weights

are initialized to be the same.

Source: cs231n

WEIGHT INITIALIZATION: CONSTANT

First idea: Small random numbers

(Gaussian with zero mean and 1e-2 standard deviation)

Symmetry breaking: Weights are different for different

neurons

Source: cs231n

WEIGHT INITIALIZATION: GAUSSIAN

First idea: Small random numbers

(Gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with deeper

networks,

i.e. Almost all neurons will become zero

 -> gradient diminishing problem.

Symmetry breaking: Weights are different for different

neurons

Source: cs231n

WEIGHT INITIALIZATION: GAUSSIAN

First idea: Small random numbers

(Gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with deeper

networks,

i.e. Almost all neurons will become zero

 -> gradient diminishing problem.

Symmetry breaking: Weights are different for different

neurons

Source: cs231n

Increase the standard deviation to 1

WEIGHT INITIALIZATION: GAUSSIAN

First idea: Small random numbers

(Gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with deeper

networks,

i.e. Almost all neurons will become zero

 -> gradient diminishing problem.

Symmetry breaking: Weights are different for different

neurons

Source: cs231n

Increase the standard deviation to 1
Almost all neurons completely saturated, either -1 or 1. Gradients

will be all zero.

 -> gradient diminishing problem.

WEIGHT INITIALIZATION: GAUSSIAN

WEIGHT INITIALIZATION: GAUSSIAN

Source: cs231n

WEIGHT INITIALIZATION: GAUSSIAN

WEIGHT INITIALIZATION: GAUSSIAN

Source: cs231n

WEIGHT INITIALIZATION: GAUSSIAN

Source: cs231n

WEIGHT INITIALIZATION: GAUSSIAN

[Glorot et al., 2010]

Source: cs231n

Calibrating the variances with 1/sqrt(fan_in)

W = Τnp. random. randn fan_in, fan_out np. sqrt(fan_in)

Reasonable initialization.

(Mathematical derivation assumes linear activations)

WEIGHT INITIALIZATION: XAVIER

Source: cs231n

WEIGHT INITIALIZATION: XAVIER

Source: cs231n

WEIGHT INITIALIZATION: XAVIER

Source: cs231n

WEIGHT INITIALIZATION: HE

63

Proper initialization is an active area of research…

Understanding the difficulty of training deep feedforward neural networks by Glorot and

Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by

Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and

Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet

classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init by Mishkin and Matas, 2015

…

Source: cs231n

ACKNOWLEDGEMENT

• Deep Learning, Stanford University

• Introduction to Deep Learning, University of Illinois at Urbana-Champaign

• Introduction to Deep Learning, Carnegie Mellon University

• Convolutional Neural Networks for Visual Recognition, Stanford University

• Natural Language Processing with Deep Learning, Stanford University

• NVDIEA Deep Learning Teaching Kit

	Slide 1: Activation Function, Data and Weight Setup
	Slide 2
	Slide 3
	Slide 4: Convolutional Neural Networks
	Slide 5: Layers used to build ConvNets
	Slide 6
	Slide 7: Non-linearity Layer
	Slide 8: Activation Functions: Linear
	Slide 9: Activation Functions: Sigmoid
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Activation Functions: Sigmoid
	Slide 14: Activation Functions: Sigmoid
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 30
	Slide 31
	Slide 33
	Slide 34
	Slide 35
	Slide 38
	Slide 39: Dataset Preparation Train/Val/Test sets
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Data Preprocessing
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: Weight Initialization: Gaussian
	Slide 58: Weight Initialization: Gaussian
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: Acknowledgement

