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DISCLAIMER

The content (text, image, and graphics) used in this slide are
adopted from many sources for academic purposes. Broadly,
the sources have been given due credit appropriately. However,
there is a chance of missing out some original primary
sources. The authors of this material do not claim any
copyright of such material.




CONVOLUTIONAL NEURAL NETWORKS

RELU RELU RELU RELU RELU RELU

CONV lCONVl CONV lCONVl CONV lCONVl FC




LAYERS USED TO BUILD CONVNETS

Input Layer (Input image)

Convolutional Layer

Non-linearity Layer (such as Sigmoid, Tanh, ReL.U, PReLU, ELU, Swish, etc.)

Pooling Layer (such as Max Pooling, Average Pooling, etc.)
Fully-Connected Layer

Classification Layer (Softmazx, etc.)




Activation Functions




NON-LINEARITY LAYER

Activation Functions

Sigmoid Leaky ReLU

o(z) = i max(0.1z, x)

tanh Maxout

tanh(x) o o max(wi z + by, w3 x + by)
RelLU ELU

max(0, z) {i(er —1) i f: g :

Source: cs231n, Stanford University
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ACTIVATION FUNCTIONS: LINEAR

Simplest activation
function

Does not include any <
non-linearity.




ACTIVATION FUNCTIONS: SIGMOID
o(w) =1/(1+e7) |




ACTIVATION FUNCTIONS: SIGMOID
o(xz) =1/(1+e™") E /
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* Sigmoids saturate and kill gradients.

€

Source: cs231n, Stanford University



ACTIVATION FUNCTIONS: SIGMOID
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ACTIVATION FUNCTIONS: SIGMOID

o(x) =1/(1+e™®) UH /
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Sigmoids saturate and kill gradients.

Sigmoid outputs are not zero-centered.

€

Source: cs231n, Stanford University



Consider what happens when the input to a neuron (x)

IS always positive:

Lo wy

*@ synapse
axon from a neuron
WoLq

cell body

w2

f (Z UL + b)

output axon

activation
function

/ Z’wz‘ﬂ?i +0b

What can we say about the gradients on w?

Always all positive or all negative

(this 1s also why you want zero-mean datal)

Source: cs231n, Stanford University
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ACTIVATION FUNCTIONS: SIGMOID

o(x) =1/(1+e™®) mé /
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Sigmoids saturate and kill gradients.

Sigmoid outputs are not zero-centered.

Exp() is a bit compute expensive. @

Source: cs231n, Stanford University



ACTIVATION FUNCTIONS: TANH
tanh(x) = 25‘3 jr zm mglf

[LeCun et al., 1991] O
Source: ‘


http://cs231n.github.io/neural-networks-1/

ACTIVATION FUNCTIONS: TANH

e?@ — e *
et +~e %

tanh neuron is simply a scaled sigmoid

tanh(x) =

neuron L

tanh(x) = 20(2z) — 1

Sigmoid

[LeCun et al., 1991] @

Source:


http://cs231n.github.io/neural-networks-1/

ACTIVATION FUNCTIONS: TANH

et® —e * 1.0 F
tanh(x) = ; f
er 4 e @ )
0.5}
tanh neuron is simply a scaled sigmoid /
neuron Ly
—10 —5 I 5 10

tanh(x) = 20(2z) — 1

Sigmoid

Like the sigmoid neuron, its activations saturate.
Unlike the sigmoid neuron its output is zero-centered.
In practice the tanh non-linearity is always preferred to the sigmoid

nonlinearity. [LeCun et al., 1991] @

Source: hitp://cs231n.github.io



http://cs231n.github.io/neural-networks-1/

ACTIVATION FUNCTIONS: RELU

f(xz) = max(0, x)

[Krizhevsky et al., 2012] @
Source:


http://cs231n.github.io/neural-networks-1/

ACTIVATION FUNCTIONS: RELU

f(xz) = max(0, x)

ReLlU is 6 times faster in the convergence of stochastic gradient descent
compared to the sigmoid/tanh (Krizhevsky et al.).

ReLlU is simple as compared to tanh/sigmoid that involve expensive
operations (exponentials, etc.)

[Krizhevsky et al., 2012] @

Source: hitp://cs231n.github.io



http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://cs231n.github.io/neural-networks-1/

ACTIVATION FUNCTIONS: RELU

f(xz) = max(0, x)

ReLlU is 6 times faster in the convergence of stochastic gradient descent
compared to the sigmoid/tanh (Krizhevsky et al.).

ReLlU is simple as compared to tanh/sigmoid that involve expensive
operations (exponentials, etc.)

Dying ReLU problem: a large gradient flowing through a ReLU neuron
could cause the weights to update in such a way that the neuron will never
activate on any datapoint again. [Krizhevsky et al., 2012] Q

Source: hitp://cs231n.github.io



http://cs231n.github.io/neural-networks-1/
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

ACTIVATION FUNCTIONS: RELU
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MULTI-LAYER NETWORK DEMO WITH ACTIVATION FUNCTION

OUTPUT

Test loss 0.020
Training loss 0.013

INPUT

Which properties do
you want to feed in?
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http://playground.tensorflow.org/

ACTIVATION FUNCTIONS: LERKY RELU

ax, x <0 .
f(x)—{x’ >0 a = 0.01

[Mass et al., 2013] O
Source: ‘


http://cs231n.github.io/neural-networks-1/

ACTIVATION FUNCTIONS: LERKY RELU

ax, x <0 _
f(x)—{x, >0 a = 0.01

Succeeded in some cases, but the results are not
always consistent.



http://cs231n.github.io/neural-networks-1/

ACTIVATION FUNCTIONS: PARRMETRIC RELU

ax,
f(x):{x, x>0

In PReLiU, the slope in the negative region is considered as a
parameter of each neuron and learnt from data.

He, K., Zhang, X.,Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. IEEE international

conference on computer vision (CVPR). @

Source:


http://cs231n.github.io/neural-networks-1/

ACTIVATION FUNCTIONS: ELU

X itx >0
) = {a: (exp(xz) — 1) ifz <0

- 10
- Exponential Linear Unit
Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. "Fast and accurate deep network learning by exponential linear units @

(elus)." International Conference on Learning Representations (ICLR) 2016.



ACTIVATION FUNCTIONS: ELU

X itx >0
) = {a: (exp(xz) — 1) ifz <0

-

- Exponential Linear Unit

- All benefits of ReLLlU

- Negative saturation regime compared with Leaky ReLU adds some robustness
to noise

- Computation requires exp()

Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. "Fast and accurate deep network learning by exponential linear units @
(elus)." International Conference on Learning Representations (ICLR) 2016.



ACTIVATION FUNCTIONS: SWISH

Swish

f(x) = x - sigmoid(Szx)

- RellU is special case of Swish

Ramachandran et al. "Swish: a self-gated activation function." ICLR Workshops, 2018.



ACTIVATION FUNCTIONS: SWISH

Swish

f(z) = x - sigmoid(Sz)

- RellU is special case of Swish

CIFAR-10 accuracy

Model ResNet WRN DenseNet

-1 LRelLU 04 .2 05.6 04 .7
PRelLU 94.1 05.1 94.5

Softplus 94.6 94.9 94.7

, ELU 04.1 04.1 04 4
=5 -4 —3 -2 -1 0 1 2 3 SELLU 93.0 93.2 93.9
GELU 043 05.5 04 .8

RelLU 93.8 053 94 .8

Swish-1 04.7 05.5 94 .8

Swish 94.5 05.5 04 .8

Ramachandran et al. "Swish: a self-gated activation function." ICLR Workshops, 2018.



ACTIVATION FUNCTIONS: ABRELU

n+1 _
Output I"’ ([)) o

{I:f<p> —B, if I}(p)—B>0
0

otherwise

AB-RelL.U

B=ax Al

average of input volume

(a) AB-ReLU if A} <0 (b) AB-ReLU if A; >0

Average Biased ReLU (ABReLU)

{

S.R.Dubey and S. Chakraborty (2020). Average Biased ReLU Based CNN Descriptor for Improved Face Retrieval. Multimedia Tools and Applications. (Springer)




ACTIVATION FUNCTIONS: IN PRACTICE

- Use ReLU. Be careful with your learning rates
- Try out ABReLU/Swish/

- Try out Leaky ReLU but performance might not be
stable

- Try out tanh but don’t expect much

- Don’t use sigmoid




DATASET PREPARATION
TRAIN/VAL/TEST SETS




IN GENERAL PEOPLE DO: TRAIN/TEST

- Split data into train and test,
- Choose hyperparameters that work best on test data

train

test




IN GENERAL PEOPLE DO: TRAIN/TEST

- Split data into train and test,
- Choose hyperparameters that work best on test data

train

test

BAD: No idea how algorithm will perform on new data




K-FOLD VALIDATION

- Split data into folds,
- Try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test




K-FOLD VALIDATION

- Split data into folds,
- Try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test

Useful for small datasets, but not used too frequently in
deep learning




BETTER APPROACH: TRAIN/VAL/TEST SETS

- Split data into train, val, and test;
- Choose hyperparameters on val and evaluate on test

train validation test




BETTER APPROACH: TRAIN/VAL/TEST SETS

- Split data into train, val, and test;
- Choose hyperparameters on val and evaluate on test

train validation test

Division can be done based on the size of dataset:
* Roughly 10k or 10% whichever is less for val and test sets.
e Rest in train set.




Data Preprocessing




DATA PREPROCESSING

original data zero-centered data normalized data

Source: cs231 nC-‘>



DATA PREPROCESSING

Consider what happens when the input to a neuron (x)
IS always positive:

f Z’wﬂ'i +0b

What can we say about the gradients on w?

Always all positive or all negative
(this 1s also why you want zero-mean datal) ")

Source: cs231n, Stanford University



DATA PREPROCESSING

original data zero-centered data

10

-10 -10

-10 -5 19 -10 -5 0 5

1

10

-10
-10

In practice for Images: only centering is preferred
e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet, ResNet, etc.)

(mean along each channel = 3 numbers)

normalized data

Source: cs231 n©



Weight Initialization




WEIGHT INITIALIZATION: CONSTANT

Q: what happens when W=Constant init is used?

output layer
input layer
hidden layer




WEIGHT INITIALIZATION: CONSTANT

Q: what happens when W=Constant init is used?

- Every neuron will compute the
same output and undergo the
exact same parameter updates.

- There 1s no source of asymmetry
between neurons if their weights
are initialized to be the same.

output layer
input layer
hidden layer

Source: cs231 nC-‘>



WEIGHT INITIALIZATION: GRUSSIAN

First idea: Small random numbers
(Gaussian with zero mean and le-2 standard deviation)

Symmetry breaking: Weights are different for different
neurons

{
Source: cs231 n©



WEIGHT INITIALIZATION: GAUSSIAN

First idea: Small random numbers
(Gaussian with zero mean and le-2 standard deviation)

Symmetry breaking: Weights are different for different
neurons

Works ~okay for small networks, but problems with deeper
networks,
1.e. Almost all neurons will become zero

-> gradient diminishing problem.

{
Source: cs231 n©



WEIGHT INITIALIZATION: GAUSSIAN

First idea: Small random numbers
(Gaussian with zero mean and le-2 standard deviation)

Symmetry breaking: Weights are different for different
neurons

Works ~okay for small networks, but problems with deeper
networks,
1.e. Almost all neurons will become zero

-> gradient diminishing problem.

Increase the standard deviation to 1

{
Source: cs231 n©



WEIGHT INITIALIZATION: GAUSSIAN

First idea: Small random numbers
(Gaussian with zero mean and le-2 standard deviation)

Symmetry breaking: Weights are different for different
neurons

Works ~okay for small networks, but problems with deeper
networks,
1.e. Almost all neurons will become zero

-> gradient diminishing problem.

Increase the standard deviation to 1
Almost all neurons completely saturated, either -1 or 1. Gradients

will be all zero.
-> gradient diminishing problem.
g g p Source: csZSan



WEIGHT INITIALIZATION: GRUSSIAN

| ets look at
some
activation
statistics

E.g. 10-layer net with
500 neurons on each
layer, using tanh
non-linearities, and
Initializing as

described In last slide.

assume some unit gaussian 19-D Input data
D = np.random.randn(1080, 508)
hidden_layer_sizes = [500]*1@
nonlinearities = ['tanh']*len(hidden layer sizes)

act = {'relu’:lambda x:np.maximum(e,x), 'tanh’

=A)
for i in xrange(len{hidden_layer _sizes)):
X =D if i == 0 else Hs[i-1] # input at this layer
fan_in = X.shapel1ll
fan out = hidden layer sizes[i]

:lambda x:np.tanh(x)}

W = np.random.randn(fan _in, fan out) * 0.1 # layer initialization

H = np.dot(X, W) # matrix multiply

H = act{nonlinearities[i]](H) # nonlinearity

Hsl[i]l] = H # cache result on this layer
# look at distributions at easch layer
print "input layer had mean %f and std 3%T° % (np.mean(D),
layer means = [np.mean(H) for i,H im Hs.iteritems()]

layer stds = [np.std(H) for i,H in Hs.iteritems()]
for i,H in Hs.iteritems{():

print 'hidden layer %d had mean %f and std St
# plot the means and standard deviations
plt.figure()
plt.subplot(121)
plt.plot{Hs.keys(), layer means, 'ob-')
plt.title( ' lLayer mean’)
plt.subplot(122)
plt.plot{Hs.keys(), layer stds, 'or-')
plt_title('layer std"')

# plot the raw distributions

plt.fTigure()

for i,H in Hs_iteritems|():
plt.subplot(l,len(Hs),i+1)
plt.hist(H.ravel(), 38, rangse=(-1,1))

% {(i+1,

np.std(D))

layer_means[i]l, layer_stds[il])

Source: cs231n



WEIGHT INITIALIZATION: GAUSSIAN

input layer had mean 0.080927 and std 0.958288

layer std

]

£

pal bl Bo
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hidden layer 1 had mean -6.000117 and std ©.213681
hidden layer 2 had mean -6.000001 and std ©.6047551
hidden layer 3 had mean -©.000002 and std ©.010630
hidden layer 4 had mean ©.000001 and std 8.©02378
hidden layer 5 had mean ©.000002 and std 8.006532
hidden layer 6 had mean -0.000000 and std ©.000119
hidden layer 7 had mean ©.000000 and std 8.000026
hidden Layer 8 had mean -0.€00000 and std ©.060006
hidden layer 9 had mean ©.000000 and std 6.800001
hidden layer 10 had mean -60.000000 and std ©.606000
0 acoa2 layer mean
- —— = — -
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WEIGHT INITIALIZATION: GAUSSIAN

W =

np.random.randn(fan in, fan out) * 1.0 # layer initialization

input layer had mean ©.001808 and std 1.681311

hidden layer 1 had mean -0.080430 and std ©.981879
hidden layer 2 had mean -0.080849 and std ©.981649
hidden layer 3 had mean ©.008566 and std 8,981601
hidden layer 4 had mean ©.008483 and std 8.981755
hidden layer 5 had mean -0.080682 and std ©.981614
hidden layer 6 had mean -0.0804681 and std ©.981568
hidden layer 7 had mean -0.080237 and std ©.981528
hidden layer 8 had mean -0.080448 and std 0.981913
hidden layer 9 had mean -0.08€899 and std 0.981728
hidden layer 10 had mean ©0.080584 and std ©.981736
G0t Ayer mean
o
[} = |
ar 'I
00%¢
LS

\

*1.0 instead of *0.01

VO giSe 1 fayer std

-l =08 09 ©5 10-15-0°% 05 JO-L0-08C 55 10<=) 0=-08 O § 101508 0a o8

Almost all neurons
completely
saturated, either -1
and 1. Gradients
will be all zero.

Source: cs231 nC-‘>



[Glorot et al., 2010]

WEIGHT INITIALIZATION: XAVIER

Calibrating the variances with 1/sqrt(fan_in)
W = np.random. randn(fan_in, fan_out) /np. sqrt(fan_in)

Reasonable initialization.
(Mathematical derivation assumes linear activations)

{
Source: cs231 nQ



WEIGHT INITIALIZATION: XAVIER

input layer had mean 8.801809 and std 1.001311 . g P SR . .
hi{,’den 1§ycr 1 had mean 9.801198 and std ©.627953 W = np.random.randn(fan_in, fan out) / np.sqrt(fan_in) # layer initialization

hidden layer 2 had mean -0.000175 and std ©.486051

hidden layer 3 had mean 0.000055 and std ©.407723 “X a S & s I : 29
hidden layer 4 had mean -0.000306 and std ©.3571G68

hidden layer 5 had mean 0.000142 and std ©.328917 aVIer lnltla Izatlon
hidden layer 6 had mean -0.000389 and std ©.292116

hidden layer 7 had mean -0.000228 and std ©.273387 [GlOfOt et al, 201 O]
hidden layer 8 had mean -0.000291 and std ©.254935

hidden layer 9 had mean 0.000361 and std ©.239266

hidden layer 10 had mean 0.000139 and std ©.228068

layer mean layer std

1) .

v Reasonable initialization.
o\ (Mathematical derivation
A : assumes linear activations)

Source: cs231n" 2



WEIGHT INITIALIZATION: XAVIER

input layer had mean 0.000501 and std 0.999444

hidden layer 1 had mean 0.338623 and std 0.582273 |y} = pp.random.randn(fan_in, fan out) / np.sqrt(fan_in) # layer initialization
hidden layer 2 had mean 0.272352 and std 0.403795 5 o o

hidden layer 3 had mean 0.186076 and std 0.276912

hidden layer 4 had mean 0.136442 and std 0.198685 &

hidden layer 5 had mean 0.099568 and std 0.140299 b t h th R LU
hidden layer 6 had mean 0.072234 and std 0.103280 u W e n USI ng e e

hidden layer 7 had mean 0.049775 and std 0.072748

hidden layer 8 had mean 0.035138 and std 0.051572

hidden layer 9 had mean 0.025404 and std 0

nonlinearity it breaks.

hidden layer 10 had mean 0.018408 and std 0.026076

layer mean 2 layer ¢td

ey

Sy 2400 LWF0 o

Source: cs231n" 2



WEIGHT INITIALIZATION: HE

input layer had mean 8.0€6501 and std ©.999444 = = A = . ; Ve aidila .
hidden layer 1 had mean ©.362488 and std 0.825232 |[W = np.random.randn(fan in, fan out) / np.sqrt(fan in/2) # layer initialization
hidden layer 2 had mean €.553614 and std 0,827835
hidden layer 3 had mean ©.545867 and std 0.813855
hidden layer 4 had mean €.565396 and std 0.826902
hidden layer 5 had mean ©.547678 and std 0.834092
hidden layer 6 had mean ©.58716€3 and std 0.860035
hidden layer 7 had mean ©.596867 and std 0.870610 E ! e a .
hidden layer 8 had mean €.623214 and std 0.889348 )
hidden layer 9 had mean ©.567498 and std 0.845357 a4 m
hidden layer 10 had mean 6.552531 and std 0.844523 (note add Itlonal /: 2)
" layer moan — Ryer std
~
at Ve
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Source: cs231n



Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks by Glorot and
Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krahenbiihl et al., 2015

All you need is a good init by Mishkin and Matas, 2015

Source: cs23 1n®
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