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CNN ARCHITECTURES FOR CLASSIFICATION
CNN Architectures: Plain Models

▪ LeNet

▪ AlexNet

▪ ZFNet

▪ VggNet

▪ Network in Network

CNN Architectures: DAG Models

▪ GoogLeNet

▪ ResNet

▪ Pre-act ResNet

▪ SENet

▪ DenseNet

▪ ResNetXt

▪ Etc.



CNN Architectures: Plain Models

▪LeNet

▪AlexNet

▪ZFNet

▪VggNet

▪Network in Network



REVIEW: LENET-5

Source: cs231n

LeCun et al. Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 1998.



REVIEW: LENET-5

Conv filters are 5x5, applied at stride 1

Subsampling (Pooling) layers are 2x2 applied at stride 2

i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC-FC]

Source: cs231n

LeCun et al. Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 1998.



ALEXNET

Source: cs231n

Architecture:

CONV1 MAX POOL1       NORM1(Local Response Normalization)

CONV2 MAX POOL2       NORM2(Local Response Normalization)

CONV3  

CONV4

CONV5 Max POOL3

FC6

FC7

FC8
Krizhevsky, et al. Imagenet classification with deep convolutional neural networks. NIPS 2012.



ALEXNET

Source: cs231n

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Q: what is the output volume size? Hint: (227-11)/4+1 = 55

Krizhevsky, et al. Imagenet classification with deep convolutional neural networks. NIPS 2012.



ALEXNET

Source: cs231n

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

Krizhevsky, et al. Imagenet classification with deep convolutional neural networks. NIPS 2012.



ALEXNET

Source: cs231n

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = 35K

Krizhevsky, et al. Imagenet classification with deep convolutional neural networks. NIPS 2012.



ALEXNET

Source: cs231n

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

Krizhevsky, et al. Imagenet classification with deep convolutional neural networks. NIPS 2012.



ALEXNET

Source: cs231n

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume [27x27x96]

Q: what is the number of parameters in this layer?

Krizhevsky, et al. Imagenet classification with deep convolutional neural networks. NIPS 2012.



ALEXNET

Source: cs231n

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume [27x27x96]

Parameters: 0!

Krizhevsky, et al. Imagenet classification with deep convolutional neural networks. NIPS 2012.



ALEXNET

Source: cs231n

Input: 227x227x3 images

After CONV1: 55x55x96

After POOL1: 27x27x96

...

Krizhevsky, et al. Imagenet classification with deep convolutional neural networks. NIPS 2012.



ALEXNET

Krizhevsky, et al. Imagenet classification with deep convolutional neural networks. NIPS 2012. Source: cs231n

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)



ALEXNET

Krizhevsky, et al. Imagenet classification with deep convolutional neural networks. NIPS 2012. Source: cs231n

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Historical note: Trained on GTX 580 GPU 

with only 3 GB of memory. Network spread 

across 2 GPUs, half the neurons (feature 

maps) on each GPU.

[55x55x48] x 2



ALEXNET

Krizhevsky, et al. Imagenet classification with deep convolutional neural networks. NIPS 2012. Source: cs231n

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

CONV1, CONV2, CONV4, CONV5: 

Connections only with feature maps on 

same GPU



ALEXNET

Krizhevsky, et al. Imagenet classification with deep convolutional neural networks. NIPS 2012. Source: cs231n

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

CONV3, FC6, FC7, FC8:

Connections with all feature maps in 

preceding layer, communication across 

GPUs



ALEXNET

Krizhevsky, et al. Imagenet classification with deep convolutional neural networks. NIPS 2012. Source: cs231n

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU

- used Norm layers (not common 

anymore)

- heavy data augmentation

- batch size 128

- SGD Momentum 0.9

- Learning rate 0.01, reduced manually 

when val accuracy saturates



IMAGENET LARGE SCALE VISUAL RECOGNITION CHALLENGE (ILSVRC) WINNERS

K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, IEEE CVPR 2016.

First CNN based Winner

http://arxiv.org/abs/1512.03385


K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, IEEE CVPR 2016.

ZFNet: Improved

hyperparameters over

AlexNet

IMAGENET LARGE SCALE VISUAL RECOGNITION CHALLENGE (ILSVRC) WINNERS

http://arxiv.org/abs/1512.03385


ZFNET

M. Zeiler, R. Fergus. Visualizing and understanding convolutional networks. ECCV 2014. Source: cs231n

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%



K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, IEEE CVPR 2016.

Deeper Networks

IMAGENET LARGE SCALE VISUAL RECOGNITION CHALLENGE (ILSVRC) WINNERS

http://arxiv.org/abs/1512.03385


VGGNET

Simonyan et al. Very deep convolutional networks for large-scale image recognition. ICLR2015.

VGG16 (source)

https://www.pinterest.com/pin/834854849655070162/


VGGNET

Source: cs231nSimonyan et al. Very deep convolutional networks for large-scale image recognition. ICLR2015.

Small filters, Deeper networks

8 layers (AlexNet)

-> 16 - 19 layers (VGGNet)

Only 3x3 CONV stride 1, pad 1

and 2x2 MAX POOL stride 2



VGGNET

Source: cs231nSimonyan et al. Very deep convolutional networks for large-scale image recognition. ICLR2015.

Small filters, Deeper networks

8 layers (AlexNet)

-> 16 - 19 layers (VGGNet)

Only 3x3 CONV stride 1, pad 1

and 2x2 MAX POOL stride 2

ImageNet top 5 error: 

11.4% (ZFNet, 2013) 

-> 

7.3% (VGGNet, 2014)



VGGNET

Source: cs231nSimonyan et al. Very deep convolutional networks for large-scale image recognition. ICLR2015.

Q: Why use smaller filters? (3x3 conv)



VGGNET

Source: cs231nSimonyan et al. Very deep convolutional networks for large-scale image recognition. ICLR2015.

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers

has same effective receptive field as

one 7x7 conv layer



VGGNET

Source: cs231nSimonyan et al. Very deep convolutional networks for large-scale image recognition. ICLR2015.

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers

has same effective receptive field as

one 7x7 conv layer

Q: What is the effective receptive field of

three 3x3 conv (stride 1) layers?



VGGNET

Source: cs231nSimonyan et al. Very deep convolutional networks for large-scale image recognition. ICLR2015.

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers

has same effective receptive field as

one 7x7 conv layer

Q: What is the effective receptive field of

three 3x3 conv (stride 1) layers?

[7x7]

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs.

72C2 for C channels per layer



Source: cs231n

VGGNET

Simonyan et al. Very deep convolutional networks for large-scale image recognition. ICLR2015.



Source: cs231n

VGGNET

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)

TOTAL params: 138M parameters

Simonyan et al. Very deep convolutional networks for large-scale image recognition. ICLR2015.



Source: cs231n

VGGNET

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)

TOTAL params: 138M parameters

Note:

Most memory is 

in early CONV

Most params are 

in late FC

Simonyan et al. Very deep convolutional networks for large-scale image recognition. ICLR2015.



NETWORK IN NETWORK (NIN)

Lin et al. Network in Network. ICLR 2014.



NETWORK IN NETWORK (NIN)

Lin et al. Network in Network. ICLR 2014. Source: cs231n

• Mlpconv layer with “micronetwork” within each conv layer to compute more 

abstract features for local patches

• Micronetwork uses multilayer perceptron (FC, i.e. 1x1 conv layers)



NETWORK IN NETWORK (NIN)

Lin et al. Network in Network. 2014.

The overall structure of NiN: stacking of three mlpconv layers and one global average pooling layer



NETWORK IN NETWORK (NIN)

Lin et al. Network in Network. 2014.

The overall structure of NiN: stacking of three mlpconv layers and one global average pooling layer



NETWORK IN NETWORK (NIN)

Lin et al. Network in Network. 2014.

• Precursor to GoogLeNet and ResNet “bottleneck” layers

• Philosophical inspiration for GoogLeNet

Source: cs231n

The overall structure of NiN: stacking of three mlpconv layers and one global average pooling layer



CNN Architectures: DAG Models

• GoogLeNet

• ResNet

• Pre-act ResNet

• SENet

• Network with Stochastic Depth

• DenseNet

• ResNetXt



K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, IEEE CVPR 2016.

Deeper Networks

IMAGENET LARGE SCALE VISUAL RECOGNITION CHALLENGE (ILSVRC) WINNERS

http://arxiv.org/abs/1512.03385


Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET
Deeper networks, with 

computational efficiency

- 22 layers

- Efficient “Inception” module

- No FC layers

- Only 5 million parameters!

       12x less than AlexNet

- Imagenet classification winner

       (6.7% top 5 error)



Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET
“Inception module”: 

design a good local network topology and 

then stack these modules on top of each 

other



Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET
Apply parallel filter operations on 

the input from previous layer:

- Multiple receptive field sizes for 

convolution (1x1, 3x3, 5x5)

- Pooling operation (3x3)

Concatenate all filter outputs 

together depth-wise

Problem: 

Computational Complexity



Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET Problem: 

Computational Complexity

Q1: What is the output size of the 

1x1 conv, with 128 filters?

Example:



1×1 CONVOLUTIONS

28

32

256

(each filter has size

1x1x256, and performs a 

256-dimensional dot

product)

28

1x1 CONV

with 128 filters

28

28

128



Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET Problem: 

Computational Complexity

Q1: What is the output size of the 

1x1 conv, with 128 filters?

Example:



Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET Problem: 

Computational Complexity

Q2: What are the output sizes of

all different filter operations?

Example:



Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET Problem: 

Computational Complexity

Q2: What are the output sizes of

all different filter operations?

Example:



Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET Problem: 

Computational Complexity

Q3:What is output size after

filter concatenation?

Example:



Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET Problem: 

Computational Complexity

Q3:What is output size after

filter concatenation?

Example:



Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET Problem: 

Computational Complexity

Q3:What is output size after

filter concatenation? Conv Ops:

[1x1 conv, 128] 

   28x28x128x1x1x256

[3x3 conv, 192] 

   28x28x192x3x3x256

[5x5 conv, 96] 

   28x28x96x5x5x256

Total: 854M ops

Very expensive 

compute

Example:



Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET Problem: 

Computational Complexity

Q3:What is output size after

filter concatenation? Solution: “bottleneck” layers 

that use 1x1 convolutions to 

reduce

feature depth

Example:



1×1 CONVOLUTIONS

28

32

256

(each filter has size

1x1x256, and performs a 

256-dimensional dot

product)

28

1x1 CONV

with 128 filters

28

28

128

preserves spatial dimensions, reduces depth!

Projects depth to lower dimension (combination of feature 

maps)



Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET

1x1 conv “bottleneck”

layers



Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256

[1x1 conv, 64] 28x28x64x1x1x256

[1x1 conv, 128] 28x28x128x1x1x256

[3x3 conv, 192] 28x28x192x3x3x64

[5x5 conv, 96] 28x28x96x5x5x64

[1x1 conv, 64] 28x28x64x1x1x256

Total: 358M ops

Compared to 854M ops for naive version, Bottleneck 

can also reduce depth after pooling layer



Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET

Stem Network:

Conv-Pool-

2x Conv-Pool

Full GoogLeNet Architecture



Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET

Stacked Inception

Modules

Full GoogLeNet Architecture



Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET

Classifier output

(removed expensive FC layers!)

Full GoogLeNet Architecture



Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015. Source: cs231n

GOOGLENET

Auxiliary classification outputs to inject additional gradient at lower layers

(AvgPool-1x1Conv-FC-FC-Softmax)

Full GoogLeNet Architecture



INCEPTION V2, V3
• Improve training with batch normalization, reducing importance of 

auxiliary classifiers

• More variants of inception modules with aggressive factorization of 
filters

C. Szegedy et al., Rethinking the inception architecture for computer vision, CVPR 2016

https://arxiv.org/pdf/1502.03167v3.pdf
https://arxiv.org/abs/1512.00567


K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, IEEE CVPR 2016.

Revolution of 

Depth

IMAGENET LARGE SCALE VISUAL RECOGNITION CHALLENGE (ILSVRC) WINNERS

http://arxiv.org/abs/1512.03385


He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016. Source: cs231n

RESNET
Very deep networks using residual 

connections

- 152-layer model for ImageNet

- ILSVRC’15 classification winner

(3.57% top 5 error)

- Swept all classification and

detection competitions in

ILSVRC’15 and COCO’15!

http://arxiv.org/abs/1512.03385


He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016. Source: cs231n

RESNET
What happens when we continue stacking deeper layers on a “plain” 

convolutional neural network?

http://arxiv.org/abs/1512.03385


He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016. Source: cs231n

RESNET
What happens when we continue stacking deeper layers on a “plain” 

convolutional neural network?

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it’s not caused by overfitting!

http://arxiv.org/abs/1512.03385


He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016. Source: cs231n

RESNET
Hypothesis: the problem is an optimization problem, deeper models are 

harder to optimize

The deeper model should be able to perform at

least as well as the shallower model.

http://arxiv.org/abs/1512.03385


He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016. Source: cs231n

RESNET
Solution: Use network layers to fit a residual mapping instead of directly 

trying to fit a desired underlying mapping

http://arxiv.org/abs/1512.03385


He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016. Source: cs231n

RESNET
Solution: Use network layers to fit a residual mapping instead of directly 

trying to fit a desired underlying mapping

http://arxiv.org/abs/1512.03385


He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016. Source: cs231n

RESNET
Full ResNet architecture:

➢ Stack residual blocks

➢ Residual block has two 3x3 conv 

layers

http://arxiv.org/abs/1512.03385


He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016. Source: cs231n

RESNET
Full ResNet architecture:

➢ Stack residual blocks

➢ Residual block has two 3x3 conv 

layers

➢ Periodically, double # of filters 

and downsample spatially using 

stride 2      (/2 in each dimension)

3x3 conv, 128 

filters, /2 

spatially with 

stride 2

3x3 conv, 64 

filters

http://arxiv.org/abs/1512.03385


He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016. Source: cs231n

RESNET
Full ResNet architecture:

➢ Stack residual blocks

➢ Residual block has two 3x3 conv 

layers

➢ Periodically, double # of filters 

and downsample spatially using 

stride 2      (/2 in each dimension)

➢ Additional conv layer at the 

beginning

3x3 conv, 128 

filters, /2 

spatially with 

stride 2

3x3 conv, 64 

filters

Beginning

conv layer

http://arxiv.org/abs/1512.03385


He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016. Source: cs231n

RESNET
Full ResNet architecture:

➢ Stack residual blocks

➢ Residual block has two 3x3 conv 

layers

➢ Periodically, double # of filters 

and downsample spatially using 

stride 2      (/2 in each dimension)

➢ Additional conv layer at the 

beginning

➢ No FC layers at the end (only FC 

1000 to output classes)

3x3 conv, 128 

filters, /2 

spatially with 

stride 2

3x3 conv, 64 

filters

Beginning

conv layer

No FC layers

besides FC

1000 to output

Classes 

Global average

pooling layer

after last

conv layer

http://arxiv.org/abs/1512.03385


He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016. Source: cs231n

RESNET

Total depths of 34, 50, 101, or 152 

layers for ImageNet

http://arxiv.org/abs/1512.03385


He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016. Source: cs231n

RESNET

For deeper networks (ResNet-50+):

use “bottleneck” layer to improve efficiency 

(similar to GoogLeNet)

http://arxiv.org/abs/1512.03385


He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016. Source: cs231n

RESNET
Training ResNet in practice:

• Batch Normalization after every CONV layer

• Xavier/2 initialization from He et al.

• SGD + Momentum (0.9)

• Learning rate: 0.1, divided by 10 when validation error saturates

• Mini-batch size 256

• Weight decay of 1e-5 for penalizing regularization term

• No dropout used

http://arxiv.org/abs/1512.03385


He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016. Source: cs231n

RESNET
Experimental Results:

• Able to train very deep networks 

without degrading (152 layers on 

ImageNet, 1202 on Cifar)

• Deeper networks now achieve 

lower training error as expected

• Swept 1st place in all ILSVRC and 

COCO 2015 competitions

http://arxiv.org/abs/1512.03385


He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016. Source: cs231n

RESNET
Experimental Results:

• Able to train very deep networks 

without degrading (152 layers on 

ImageNet, 1202 on Cifar)

• Deeper networks now achieve 

lower training error as expected

• Swept 1st place in all ILSVRC and 

COCO 2015 competitions

http://arxiv.org/abs/1512.03385


He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016. Source: cs231n

RESNET
Experimental Results:

• Able to train very deep networks 

without degrading (152 layers on 

ImageNet, 1202 on Cifar)

• Deeper networks now achieve 

lower training error as expected

• Swept 1st place in all ILSVRC and 

COCO 2015 competitions

ILSVRC 2015 classification winner (3.6% 

top 5 error) -- better than “human 

performance”! (Russakovsky 2014)

http://arxiv.org/abs/1512.03385


INCEPTION V4

C. Szegedy et al., Inception-v4, Inception-ResNet and the Impact of Residual 

Connections on Learning, arXiv 2016

Inception-v4: Resnet + Inception!

https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261


Canziani et al. An Analysis of Deep Neural Network Models for Practical Applications, 2017.

COMPARING COMPLEXITY …

Source: cs231n
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VGG: Highest

memory, most

operations



Canziani et al. An Analysis of Deep Neural Network Models for Practical Applications, 2017.

COMPARING COMPLEXITY …

Source: cs231n

GoogLeNet:

most efficient



Canziani et al. An Analysis of Deep Neural Network Models for Practical Applications, 2017.

COMPARING COMPLEXITY …

Source: cs231n

AlexNet:

Smaller compute, still memory

heavy, lower accuracy



Canziani et al. An Analysis of Deep Neural Network Models for Practical Applications, 2017.

COMPARING COMPLEXITY …

Source: cs231n

ResNet:

Moderate efficiency depending 

on model, highest accuracy



He, Kaiming, et al. "Identity mappings in deep residual networks." Europ. conf. on computer vision (ECCV), 2016.

PRE-ACTIVATED RESNET



He, Kaiming, et al. "Identity mappings in deep residual networks." Europ. conf. on computer vision (ECCV), 2016.

PRE-ACTIVATED RESNET



He, Kaiming, et al. "Identity mappings in deep residual networks." Europ. conf. on computer vision (ECCV), 2016.

PRE-ACTIVATED RESNET

Classification error (%) on the CIFAR-10 test set using different 

activation functions.



Hu et al. Squeeze-and-Excitation Networks, CVPR 2018.

SENET (SQUEEZE AND EXCITATION NETWORK)
2017 ImageNet Challenge Winner

Top-5 Error: 2.251%



Hu et al. Squeeze-and-Excitation Networks, CVPR 2018.

SENET (SQUEEZE AND EXCITATION NETWORK)
2017 ImageNet Challenge Winner

Top-5 Error: 2.251%

“Squeeze-and-Excitation”(SE) block adaptively recalibrates 

 channel-wise feature responses 

  by explicitly modelling interdependencies between channels.



Hu et al. Squeeze-and-Excitation Networks, CVPR 2018.

SENET (SQUEEZE AND EXCITATION NETWORK)

Squeeze:  Average Global Pooling

cth channel of C

2017 ImageNet Challenge Winner

Top-5 Error: 2.251%
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Hu et al. Squeeze-and-Excitation Networks, CVPR 2018.

SENET (SQUEEZE AND EXCITATION NETWORK)

Scaling:  

2017 ImageNet Challenge Winner

Top-5 Error: 2.251%



Hu et al. Squeeze-and-Excitation Networks, CVPR 2018.

SE-INCEPTION MODULE



Hu et al. Squeeze-and-Excitation Networks, CVPR 2018.

SE-RESNET MODULE



OTHER RESNET IMPROVEMENTS TO KNOW …



DEEP NETWORKS WITH STOCHASTIC DEPTH

Huang et al. Deep networks with stochastic depth. ECCV 2016.

• Motivation: reduce vanishing gradients and 

training time through short networks during 

training

• Randomly drop a subset of layers during each 

training pass

• Bypass with identity function

• Use full deep network at test time

Source: cs231n



WIDE RESNET
• Reduce number of residual blocks, but increase number of feature maps in each 

block

• More parallelizable, better feature reuse

• 16-layer WRN outperforms 1000-layer ResNets, though with much 
larger # of parameters 

S. Zagoryuko and N. Komodakis, Wide Residual Networks, BMVC 2016

Image source

https://arxiv.org/pdf/1605.07146.pdf
https://pytorch.org/hub/pytorch_vision_wide_resnet/


DENSENET
▪ Shorter connections (like ResNet) help

▪ Why not just connect them all?

Huang et al. Densely connected convolutional networks. CVPR 2017.



AGGREGATED RESIDUAL TRANSFORMATIONS FOR 
DEEP NEURAL NETWORKS (RESNEXT)

Xie et al. Aggregated residual transformations for deep neural networks. CVPR 2017.

• Improved ResNet

• Increases width of residual 

block through multiple 

parallel pathways 

(“cardinality”)

• Parallel pathways similar in 

spirit to Inception module

Source: cs231n



DESIGN PRINCIPLES
• Make networks parameter-efficient

• Reduce filter sizes, factorize filters

• Use 1x1 convolutions to reduce number of feature 
maps before more expensive operations

• Minimize reliance on FC layers

• Reduce spatial resolution gradually, within each level of resolution 
replicate a given “block” multiple times

• Use skip connections and/or create multiple redundant paths 
through the network

• Play around with depth vs. width vs. “cardinality”
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