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The content (text, image, and graphics) used in this slide are
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there is a chance of missing out some original primary
sources. The authors of this material do not claim any
copyright of such material.
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0BJECT CATEGORY DETECTION

= Focus on object search: “Where is 1t?”

= Build templates that quickly differentiate object patch from
background patch
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WHAT ARE THE CHALLENGES OF OBJECT DETECTION?

- Images may contain more than one class, multiple instances from the
same class

- Bounding box localization

- Evaluation
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https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088

0BJECT DETECTION EVALUATION

At test time, predict bounding boxes, class labels, and confidence scores

For each detection, determine whether it is a true or false positive

- PASCAL criterion: Area(GT N Det) / Area(GT U Det) > 0.5

- For multiple detections of the same ground truth box, only one is
considered a true positive

Ground truth (GT)




OB]ECT DETECTION EVALUATION

At test time, predict bounding boxes, class labels, and confidence scores
For each detection, determine whether it is a true or false positive

For each class, sort detections from highest to lowest confidence, plot Recall-
Precision curve and compute Average Precision
(area under the curve)

Take mean of AP over classes to get mAP
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Precision: true positive detections / total detections
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Recall: true positive detections / total positive test
instances
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* 20 challenge classes:

e Person

* Animals: bird, cat, cow, dog, horse, sheep

* Vehicles: airplane, bicycle, boat, bus, car, motorbike, train

* Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

* Dataset size (by 2012): 11.5K training/validation images, 27K
bounding boxes, 7K segmentations

http://host.robots.ox.ac.uk/pascal/VOC/ @



http://host.robots.ox.ac.uk/pascal/VOC/

PROGRESS ON PASCAL DETECTION

PASCALVOC
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CURRENT BENCHMARK: COCO

What is COCO?

F h:’ H i .4..!_ Common Objects in Context

COCO is a large-scale object detection,
segmentation, and captioning dataset.
COCO has several features: —

Object segmentation
Recognition in context

Superpixel stuff segmentation
330K images (>200K labeled)
1.5 million object instances
80 object categories

91 stuff categories

5 captions per image

250,000 people with keypoints

http://cocodataset.org/#home @

LS
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COCO DATASET: TASKS

person, sheep, dog -

R Y

 Also:
» keypoint prediction,
* captioning,
* question answering

\

semantic segmentation instance segmentation

. Leaderboard: http://cocodataset.org/#detection-leaderboard

. Official COCO challenges no longer include detection
. Emphasis has shifted to instance segmentation and dense semantic segmentation @


http://cocodataset.org/#detection-leaderboard
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APPROACHES TO DETECTION: SLIDING WINDOWS

Detection

- Slide a window across the image and evaluate a detection model at
each location

- Thousands of windows to evaluate: efficiency and low false positive rates are
essential

- Difficult to extend to a large range of scales, aspect ratios




Object

Search Recognition

Originalu Image Candidate Boxes Final Detections

- Generate and evaluate a few hundred region proposals
= Proposal mechanism can take advantage of low-level perceptual organization cues

= Proposal mechanism can be category-specific or category-independent, hand-crafted or
trained

= Classifier can be slower but more powerful




SELECTIVE SEARCH FOR DETECTION

- Use hierarchical segmentation: start with small superpixels and merge
based on diverse cues

Input Image

]J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, Selective Search for
Object Recognition, [JCV 2013



http://koen.me/research/selectivesearch/
http://koen.me/research/selectivesearch/

SELECTIVE SEARCH FOR DETECTION

Ground truth

Training Examples Model False Positives Training Examples

SVM Search for _
_

., Positive examples
—_—

Add to tralnmg
(Histogram Intersection

I false positives examples
Difficult negatives Kernel)
—
if overlap with
| positive 20-50%
Retrain

- Feature extraction: color SIFT, codebook of size 4K, spatial pyramid with four
levels = 360K dimensions

]J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, Selective Search for
Object Recognition, [JCV 2013 @



http://koen.me/research/selectivesearch/
http://koen.me/research/selectivesearch/

APPROACHES TO DETECTION

Before ~2010, dominated by sliding windows
2010-2013: proposal-driven

Deep learning approaches started as proposal-driven, but have evolved back
toward sliding windows

Most recently, “global” methods are becoming more common




CNN METHODS FOR OBJECT DETECTION




CNN AS FEATURE EXTRACTOR
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CNN AS FEATURE EXTRACTOR

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

><z><z Dog? NO
ik s 1L Cat? NO

L L Background? YES

©
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CNN AS FEATURE EXTRACTOR

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background
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CNN AS FEATURE EXTRACTOR

Apply a CNN to many different crops of the
image, CNN classifies each crop as object

or background

, NB;B N&Xf Dog? NO
o Ll  Cat? YES

=N I
Al T e b Background? NO
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CNN AS FEATURE EXTRACTOR

=What could be the problems?




CNN AS FEATURE EXTRACTOR

=What could be the problems?

= Suppose we have a 600 x 600 image, if sliding window size is 20
x 20, then have (600-20+1) x (600-20+1) = ~330,000 windows




CNN AS FEATURE EXTRACTOR

=What could be the problems?

= Suppose we have a 600 x 600 image, if sliding window size is 20
x 20, then have (600-20+1) x (600-20+1) = ~330,000 windows

* Sometimes we want to have more accurate results -> multi-
scale detection
= Resize image
= Multi-scale sliding window




CNN AS FEATURE EXTRACTOR

=What could be the problems?

= Suppose we have a 600 x 600 image, if sliding window size is 20
x 20, then have (600-20+1) x (600-20+1) = ~330,000 windows

* Sometimes we want to have more accurate results -> multi-
scale detection
= Resize image
= Multi-scale sliding window

= For each image, we need to do the forward pass in the CNN for
~330,000 times. -> Slow!!!

€



REGION PROPOSAL

= Solution

= Use some fast algorithms to filter out some regions first, only feed the potential region (region
proposals) into CNN

= E.g. selective search

Uijilings et al. JCV 2013



R-CNN: REGION PROF

Source: R. Girshick

05ALS + CNN FEATURES

SVMs Classify regions with SVMs

SVMs 1

SVMs

Forward each region
through ConvNet

ConvNet

ConvNet

ConvNet ﬁ , ,
Warped image regions

R. Girshick, J. Donahue, T. Darrell, and ]J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, CVPR@


https://arxiv.org/pdf/1311.2524.pdf

R- CNN (GIRSHICK LT AL CVPR 2014)

warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classity
1mage proposals (~2Kk) CNN features regions
= Replace sliding windows with “selective search” region proposals (Uijilings et al. [JCV
2013)
= Extract rectangles around regions and resize to 227x227

= Extract features with fine-tuned CNN (that was initialized with network trained on ImageNet
before training)

= Classify last layer of network features with SVM, refine bounding box localization (bbox
regression) simultaneously

€
http://arxiv.org/pdf/1311.2524.pdf



http://arxiv.org/pdf/1311.2524.pdf

PR 2014)

] warped region

aeroplane? no.

R-CNN (GIRSHICK LT AL. CVI

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classity
1mage proposals (~2k) CNN features regions

* Regions: ~2000 Selective Search proposals

* Network: AlexNet pre-trained on ImageNet (1000 classes), fine-tuned on PASCAL
(21 classes)

 Final detector: warp proposal regions, extract fc7 network activations (4096
dimensions), classify with linear SVM

* Bounding box regression to refine box locations

* Performance: mAP of 53.7% on PASCAL 2010
(vs. 35.1% for Selective Search and 33.4% for Deformable Part Models) @


http://arxiv.org/pdf/1311.2524.pdf

R-CNN PROS AND CONS

« Pros
-  Much more accurate than previous approaches!
- Any deep architecture can immediately be “plugged
ln!!
+ Cons
- Not a single end-to-end system
Fine-tune network with softmax classifier (log loss)

Train post-hoc linear SVMs (hinge loss)
Train post-hoc bounding-box regressions (least squares)

- Training was slow (84h), took up a lot of storage
2000 CNN passes per image

- Inference (detection) was slow (47s / image with
VGG16)




BOUNDING BOX REGRESSION

= Intuition

= If you observe part of the object, according to the seen examples, you
should be able to refine the localization

= E.g. given the red box below, since you’ve seen many airplanes, you know
this is not a good localization, you will adjust it to the green one




BOUNDING BOX REGRESSION

= Intuition

= If you observe part of the object, according to the seen examples, you
should be able to refine the localization

= E.g. given the red box below, since you’ve seen many airplanes, you know
this is not a good localization, you will adjust it to the green one




R-CNN (GIRSHICK ET AL. CVPR 2014)

=What could be the problems?

warped region aeroplane? no.
» :

person? yes.

tvmonitor? no.

2. Extract region 3. Compiite 4. Classity
1mimage proposals (~2k) CNN features regions

©



R-CNN (GIRSHICK ET AL. CVPR 2014)

=What could be the problems?

= Repetitive computation! For overlapping regions, we feed it
multiple times into CNN

warped region

aeroplane? no.

person? yes.

tvimonitor? no.

1. Input 2. Extract region 3. Compiite 4. Classity
mimage proposals (~2k) CNN features regions

©



FAST R-CNN (GIRSHICK ICCV 2015)

= Solution
= Why not feed the whole image into CNN only once! Then crop features instead of image itself

' - = Outputs: b b OX
_4 = Deep
= . softmax regressor
a &L | ConvNet| | ° = 5
) Comiaced b U Rol - =3
— =3 FC FC
/o | = pooling -
< | e . o layer :
o N It
B P <—|==projection\_
5\ Conv X, Rol feature
ol feature map Veeloe e

* For each Rol, network predicts probabilities for C + 1 classes (class O
is background) and four bounding box offsets for C classes @
https://arxiv.org/pdf/1504.08083.pdf



https://arxiv.org/pdf/1504.08083.pdf
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FAST R-CNN (GIRSHICK ICCV 2015)

Rather than using post-hoc bounding-box regressors, bounding-box regression is implemented
as an additional linear layer in the network

Softmax classifier softmax Linear

Y s

FCs Fully-connected layers

“Rol Pooling” layer

Region / A ; A7/ “conv5” feature map of image

proposals

Bounding-box regressors

Forward whole image through ConvNet

ConvNet

CIRERAARRRRAL

UL

https://arxiv.org/pdf/1504.08083.pdf @
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FAST R-CNN (GIRSHICK ICCV 2015)

Log loss + L1 loss

s 1|

softmax

Multi-task loss

—_—

Linear

%4
FCs
AN

VAV A a4
/ﬁi:l /4
}

— Trainable

ConvNet

(LI

(LR

https://arxiv.org/pdf/1504.08083.pdf @
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FAST R-CNN RESULTS
I N

Train time (h) 9.5 84

- Speedup 8.8x

Test time / image 0.32s 47.0s

- Test speedup 146x

mAP 66.9% 66.0% (vs.83.7% for
AlexNet)

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16.

Source: R. Girshick



FAST R-CNN (GIRSHICK ICCV 2015)

=What could be the problems?




FAST R-CNN (GIRSHICK ICCV 2015)

=What could be the problems?

= Why we need the region proposal pre-processing step? That’s
not “deep learning” at all. Not cool!

UljllLIlgS €l dl. ljwV 4aVlo



FASTER R-CNN (REN ET AL. NIPS 2015)

=Solution
= Why not generate region proposals using CNN??!
-> RPN

I Softmax I | BBox Reg |

~N 7

Dense I
| T BBox Reg I Softmax
4

| Rol Pooling | Conv

Region Proposal
Network

Image credit: @

https://arxiv.org/pdf/1506.01497.pdf http://zh.gluon.ai/chapter computer-vision/object-detection.html
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FASTER

R-CNN (REN ET AL. NIPS 2015)

detector

Region O
proposals

Y/

Region

Proposal feature map
Network feature map

W W
share features
M
CNN ' CNN
@ —— hff/ A

S.Ren, K. He, R. Girshick, and J. Sun,
, NIPS 2015
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FASTER

 R-CNN (REN ET AL. NIPS 2015)

Classification Boundin ng- -box

loss & % regression loss

Classification

ONE
NETWORK,
FOUR LOSSES

Source:R. Girshick, K. He
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Region Proposal Network
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FASTER R-CNN (REN ET AL. NIPS 2015)

RPN: Region Proposal Network

o3

[ fi = FenED |

https://arxiv.org/pdf/1506.01497.pdf
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FASTER R-CNN (REN ET AL. NIPS 2015)

RPN: Anchor Box

Anchor box: predictions are
w.r.t. this box, not the 3x3
sliding window

| fi=FeND) | -

3x3 “sliding window”
Scans the feature map
looking objects

https://arxiv.org/pdf/1506.01497.pdf Stides by Ross .
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FASTER R-CNN (REN ET AL. NIPS 2015)

RPN: Anchor Box

Anchor box: predictions are
w.r.t. this box, not the 3x3
sliding window

| fi=FeNQ) | -

3x3 “sliding window”
> Objectness classifier

> Box regressor

predicting (dx, dy, dh, dw) o __‘

E Conv feature map
https://arxiv.org/pdf/1506.01497.pdf Stides by Ross o
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FASTER R-CNN (REN ET AL. NIPS 2015)

RPN PrediCtion (On Object) Anchor box: transformed by

Objectness score ~_ box regressor
P(object) = 0.94
[ _—

3x3 “sliding window”
> Objectness classifier

> Box regressor
predicting (dx, dy, dh, dw)

\

/4
https://arxiv.org/pdf/1506.01497.pdf Slides by Ross Gi@
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FASTER R-CNN (REN ET AL. NIPS 2015)

RPN: Prediction (off object)

Objectness score

Anchor box: transformed by
box regressor

3x3 “sliding window” t) = 0.02
» Objectness classifier

> Box regressor
predicting (dx, dy, dh, dw)

https://arxiv.org/pdf/1506.01497.pdf Stides by Ross Gis Y
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FASTER R-CNN (REN ET AL. NIPS 2015)

RPN: Multiple Anchors

Anchor boxes: K anchors
per location with different
scales and aspect ratios

[fI=FCN(I)} o

3x3 “sliding window”
» K objectness classifiers

> K box regressors

https://arxiv.org/pdf/1506.01497.pdf stces by Ross 1. Y
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FASTER R-CNN (REN ET AL. NIPS 2015)

Region proposal network

2k scores 4k coordinates <7 k anchor boxes

cls layer ‘ ' reg layer _

256-d
t intermediate layer

sliding window

conv feature map

https://arxiv.org/pdf/1506.01497.pdf
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Faster R-CNN (Ren et al. NIPS 2015)

FASTER R-CNN RESULTS
B B N

R-CNN ~50s
Fast R-CNN ~2s 66.9 70.0
Faster R-CNN 198ms 69.9 73.2

detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet




FASTER

Progress on PASCAL VOC database

mean Average Precision (mAP)
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FASTER R-CNN (REN ET AL. NIPS 2015)

=What could be the problems
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FASTER R-CNN (REN ET AL. NIPS 2015)

=What could be the problems

= Two-stage detection pipeline is still too slow to apply on real-
time images and videos

https://arxiv.org/pdf/1506.01497.pdf
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ONE-STAGE DETECTION

= Solution

= Don’t generate object proposals!

= Consider a tiny subset of the output space by design; directly classify this

small set of boxes

I Softmax I I BBox Reg I

I bense I BBox Reg I Softmax |
) )
IRol Pooling I Conv

al=1

Region Proposal

Network

Image credit:
http://zh.gluon.ai/chapter computer-vision/object-detection.html

©
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YOU ONLY LOOK ONCE (YOLO)

Go from input image to tensor of scores with one big convolutional network!

e
448
7
7
12
T
56
3 3 \
448 3 28 3 .
3 1415 7 LY = 7 >< 7
112 3 ><
56
28 14
7 7 7
3 192 256 512 1024 1024 1024 4096 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer  Conn. Layer
7x7x64-5-2 3Ix3x192 1x1x128 1x1x256 1 y 4 1x1x512 7, 3x3x1024
Maxpool Layer Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-s-2 2x2-s-2 Ix1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-s-2
Maxpool Layer = Maxpool Layer
2x2-5-2 2x2-5-2

€

Redmon et al. You only look once: Unified, real-time object detection. CVPR 2016.



YOU ONLY LOOK ONCE (YOLO)

Go from input image to tensor of scores with one big convolutional network!

s

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
5 numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of C
classes (including
background as a class)

Input image Divide image into grid Output:
3XHxW 7x7 7xXx7x(5*B +C)

Image a set of base boxes
centered at each grid cell

Redmon et al. You only look once: Unified, real-time object detection. cvpr 2016. Slides by Justin Johnson




YOU ONLY LOOK ONCE (YOLO)

Go from input image to tensor of scores with one big convolutional network!

s

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
5 numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of C
classes (including
background as a class)

Input image Divide image into grid Output:
3XHxW 7x7 7X7x(5*B+C)

Image a set of base boxes
centered at each grid cell

B = 2 in experiments
C =201in PASCALVOC
Final prediction=7X7%X30 tensor.

Redmon et al. You only look once: Unified, real-time object detection. cvpr 2016. Slides by Justin Johnson




YOU ONLY LOOK ONCE (YOLO)

Go from input image to tensor of scores with one big convolutional network!

s

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
5 numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of C
classes (including
background as a class)

Input image Divide image into grid Output:
3XHxW 7x7 7xXx7x(5*B+C)

Image a set of base boxes
centered at each grid cell

=Very efficient but lower accuracy

Redmon et al. You only look once: Unified, real-time object detection. cvpr 2016. Slides by Justin Johnson




YOU ONLY LOOK ONCE (YOLO)

- Each grid cell predicts only two boxes and can only have one class —
this limits the number of nearby objects that can be predicted

- Localization accuracy suffers compared to Fast(er) R-CNN due to
coarser features, errors on small boxes

- Ix speedup over Faster R-CNN (45-155 FPS vs. 7-18 FPS)




S3D: SINGLE SHOT MULTIBOX DETECTOR
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(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map

- Similarly to YOLO, predict bounding boxes directly from conv maps

- Unlike YOLO, do not use FC layers and predict different size boxes
from conv maps at different resolutions

- Similarly to RPN, use anchors

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, S5D: Single Shot
MultiBox Detector, ECCV 2016.
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S3D: SINGLE SHOT MULTIBOX DETECTOR

SSD
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= Run a small 3%X3 sized convolutional kernel to predict the bounding boxes and classification
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= SSD also uses anchor boxes at various aspect ratio similar to Faster-RCNN and learns the off-set
rather than learning the box.

= In order to handle the scale, SSD predicts bounding boxes after multiple convolutional layers.

Liu et al. SSD: Single Shot MultiBox Detector, ECCV 2016.
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53D: SINGLE SHOT MULTIBOX DETECTOR

Faster RCNN

I Ssp
@ YoLo

Aty ‘ Fast RCNN

Speed

Source: http://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/



ONE-STAGE DETECTION

=What could be the problems?




ONE-STAGE DETECTION

=What could be the problems?
* The extreme foreground-background class imbalance
-> we have a lot more negative examples.




ONE-STAGE DETECTION

=What could be the problems?
* The extreme foreground-background class imbalance
-> we have a lot more negative examples.

* The vast number of easy negatives overwhelms the detector
during training.




RETINANET (LIN ET AL. ICCV 2017)

= Solution

= For easy negative examples, down-weight the loss, so that the gradients
from these example have smaller impact to the model

Cross-entropy Loss

5
CE(p:) = — log(p:) =0
~ = 0.
4 FL(p:) = —(1 — p:)” log(pt) v =1
v=2
3 — =9
7y
3
— 5l Focal Loss
well-classified
examples
1+ .
‘g B
0 : — S a— S
0 0.2 0.4 0.6 0.8 1
probability of ground truth class @

Lin et al. Focal loss for dense object detection. ICCV 2017. hitps://arxiv.org/pdi/1708.02002.pdf



https://arxiv.org/pdf/1708.02002.pdf

COCO Object Detection Average Precision (%)

Past
(best circa 2015
2012)

Movement to

5 } Deep Learning methods:
3x improvement in AP

DPM Fast R-CNN
(Pre DL) (AlexNet)




COCO Object Detection Average Precision (%)

Past ) 2.5 years )
(best circa 2015 - 2017
2012)
46
36 39
Progress within 29
DL methods: 19
Also 3x! 15
. W B
—
DPM Fast R-CNN Fast R-CNN Faster R-CNN Faster R-CNN Faster R-CNN Mask R-CNN
(Pre DL) (AlexNet) (VGG-16) (VGG-16) (ResNet-50) (R-101-FPN) (X-152-FPN)
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YOLO V2

«  Remove FC layer, do
convolutional prediction with

VOC 2007 results

C 80+ ;
anchor boxes instead =L S . 0O () 0
v “f‘Rg;net S5D512 8 544x544 O L’E’
> ° . s
- Increase resolution of input 0 rocter Ry B Sssee
. = o : O _.
images and conv feature maps = : e
U Fast R-CNN .
. o ?@ =10 :
- Improve accuracy using batch S : 28ares
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Q ]
= 60- :
0 30 50

J. Redmon and A. Farhadi,

Frames Per Second

, CVPR 2017

100



https://pjreddie.com/media/files/papers/YOLO9000.pdf
https://www.youtube.com/watch?v=VOC3huqHrss&feature=youtu.be

YOLO V3

YOLOVvV3: An Incremental Improvement

Joseph Redmon, Ali Farhadi
University of Washington
Abstract 38 W voLova

t RetinaNet-50

36 - [G] RetinaNet-101
We present some updates to YOLO! We made a bunch H
of little design changes to make it better. We also trained o 34l [C] DSSDa321 280 85
this new network that’s pretty swell. It’s a little bigger than g e 15} saoota = >
last time but more accurate. It's still fast though, don’t O g5 | [g]_E;EiE:ESF:gN :gg g
worry. At 320 x 320 YOLOV3 runs in 22 ms at 28.2 mAP, ﬁ RefinaNe+50-500 325 73

as accurate as SSD but three times faster. When we look
at the old .5 10U mAP detection metric YOLOV3 is quite
good. It achieves 57.9 APgy in 51 ms on a Titan X, com-
pared to 57.5 APsq in 198 ms by RetinaNet, similar perfor-
mance but 3.8x faster. As always, all the code is online at
https://pjreddie.com/yolo/.

1. Introduction

FetinaMet-101-300 34.4 90
RetinaMet-101-800 37.8 158

YOLOv3-320 sR2 22

i YOLOV3-416 310 29

‘ﬁ' 28 @ L . YOLOv3-608 330 51
50 100 180 200 250

inference time (ms)

Figure 1. We adapt this figure from the Focal Loss paper ["].
YOLOv3 runs significantly faster than other detection methods
with comparable performance. Times from either an M40 or Titan
X, they are basically the same GPU.

https://pjreddie.com/media/files/papers/YOLOv3.pdf



https://pjreddie.com/media/files/papers/YOLOv3.pdf
https://pjreddie.com/media/files/papers/YOLOv3.pdf
https://pjreddie.com/media/files/papers/YOLOv3.pdf

SUMMARY 50 FAR

R-CNN: region proposals + CNN on cropped, resampled regions

Fast R-CNN: region proposals + Rol pooling on top of a conv feature
map

Faster R-CNN: RPN + Rol pooling

Next generation of detectors: YOLO, SSD, RetinaNet

- Direct prediction of BB offsets, class scores on top of
conv feature maps

-  Get better context by combining feature maps at
multiple resolutions

Most recent developments: architectures borrowed from dense
prediction, transformers




DETECTION TRANSFORMER (DETR)

— transformer
CNN > > encoder-
decoder

set of image features

backbone h encoder
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transformer
encoder

FFN > class,
box

no

N. Carion et al. End-to-end object detection with transformers. arXiv 2020



https://arxiv.org/pdf/2005.12872.pdf
https://arxiv.org/pdf/2005.12872.pdf
https://arxiv.org/pdf/2005.12872.pdf
https://arxiv.org/pdf/2005.12872.pdf
https://arxiv.org/pdf/2005.12872.pdf
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