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DISCLAIMER

The content (text, image, and graphics) used in this slide are
adopted from many sources for academic purposes. Broadly,
the sources have been given due credit appropriately. However,
there is a chance of missing out some original primary
sources. The authors of this material do not claim any
copyright of such material.
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (X, y)
X Is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation,
Image captioning, etc.

Credit: cs231n, Stanford
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (X, y)
X Is data, y is label

Goal: Learn a function to map x ->y

DOG, DOG, CAT

Examples: Classification,

regression, object detection, Object Detection
semantic segmentation,

Image captioning, etc.

Credit: cs231n, Stanford



Supervised vs Unsupervised Learning

Supervised Learning

Data: (X, y)
X Is data, y is label

Goal: Learn a functionto map x ->y GRASS, ,
TREE, SKY
Examples: Classification, Semantic Segmentation

regression, object detection,
semantic segmentation,
Image captioning, etc.

Credit: cs231n, Stanford



Supervised vs Unsupervised Learning

Supervised Learning

Data: (X, y)
X Is data, y is label

Goal: Learn a functionto map x ->y
A cat sitting on a suitcase on the floor

Examples: Classification,

regression, object detection, Image Captioning

semantic segmentation,

Image captioning, etc.

Credit: cs231n, Stanford



Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Credit: cs231n, Stanford



Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

K-Means Clustering

Credit: cs231n, Stanford



Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

L] ] b
_t_i-: H
|

Goal: Learn some underlying
hidden structure of the data

2-d

_ (Principal Component Analysis)
Examples: Clustering, Dimensionality Reduction

dimensionality reduction, feature
learning, density estimation, etc.

Credit: cs231n, Stanford



Supervised vs Unsupervised Learning

Unsupervised Learning

Output: Sample from
training distribution

Data: x :

Just data, no labels! P
Network

Goal: Learn some underlying ik e neise i

hidden structure of the data

Generative Advarsarial Networks
Examples: Clustering, (Distribution learning)
dimensionality reduction, feature

learning, density estimation, etc.

Credit: cs231n, Stanford



Autoencoders

Unsupervised approach for learning a lower-dimensional feature
representation from unlabeled training data

Features 2

x Encoder

Input data T

Credit: cs231n, Stanford



Autoencoders

Unsupervised approach for learning a lower-dimensional feature
representation from unlabeled training data

Originally: Linear +
nonlinearity (sigmoid)
Later: Deep, fully-
connected

Later: ReLU CNN

Features > / mﬁﬂg ~

x Encoder W‘ﬁﬁ
Input data T nsﬂn
Credit: cs231n, Stanford -E ( .E




Autoencoders

Unsupervised approach for learning a lower-dimensional feature
representation from unlabeled training data

Z usually smaller than X

(Dimensionality Originally: Linear +
Reduction) nonlinearity (sigmoid)
Later: Deep, fully-
Q: Why dimensionality connected
reduction? Later: ReLU CNN
Features > / | S; =
X Encoder Ll %
Input data €T . : -

Credit: cs231n, Stanford



Autoencoders

Unsupervised approach for learning a lower-dimensional feature
representation from unlabeled training data

Z usually smaller than X

(Dimensionality Originally: Linear +
Reduction) nonlinearity (sigmoid)

Later: Deep, fully-
Q: Why dimensionality connected
reduction? Later: ReLU CNN
A: Want features to Features o / ‘ g
capture meaningful T ﬁ
factors of variation in Encoder ~ ‘g .
data Input data T . : ‘

Credit: cs231n, Stanford



Autoencoders

How to learn this feature representation?

Features s

x Encoder

Input data T

Credit: cs231n, Stanford



Autoencoders

How to learn this feature representation?
Train such that features can be used to reconstruct
original data "Autoencoding” - encoding itself

Reconstructed A
. 4 b
input data
I Decoder
Features >
x Encoder
4 i

Input data

Credit: cs231n, Stanford



Autoencoders

How to learn this feature representation?
Train such that features can be used to reconstruct
original data "Autoencoding” - encoding itself

Originally: Linear +
nonlinearity (sigmoid)
Later: Deep, fully-

/ connected

Decoder | ater: ReLU CNN

Reconstructed
iInput data

Encoder

7
Features 2
4

Input data

Credit: cs231n, Stanford



Autoencoders

Reconstructed Data

How to learn this feature representation?
Train such that features can be used to reconstruct [ el S e ' A Pe
original data "Autoencoding” - encoding itself

Reconstructed

input data

Features

Decoder

Encoder

Input data

|
|

Credit: cs231n, Stanford
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Autoencoders

Reconstructed Data

Train such that features can be used to
reconstruct original data

L2 Loss Function

|z 5 &[°«—

T

Reconstructed 7
input data
X Decoder
Features 2
I Encoder
4 i

Input data

Credit: cs231n, Stanford
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Autoencoders

Reconstructed Data

Train such that features can be used to
reconstruct original data

Doesn’t use labels!

L2 Loss Function

|z 5 &[°«—

T

Reconstructed 7
input data
X Decoder
Features 2
I Encoder
4 i

Input data

Credit: cs231n, Stanford
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Autoencoders

Reconstructed T
input data ___> After training,
Decoder
throw away decoder
Features i
I Encoder
4 i

Input data

Credit: cs231n, Stanford



Autoencoders

Features s
x Encoder
Input data T

Credit: cs231n, Stanford



Autoencoders

Encoder can be used to
Initialize a supervised model

Loss Function
(Softmax, etc.)

AN

Predicted Label

Classifier

Encoder

Y
Features 2
4

Input data

Credit: cs231n, Stanford



Autoencoders

Encoder can be used to
Initialize a supervised model

Loss Function
(Softmax, etc.)

AN

Predicted Label

Fine-tune

Classifier | encoder | |
jointly with Train for final task
classifier (sometimes with

small data)

o MR

Credit: cs231n, Stanford

Encoder

Y
Features >
A i

Input data




Generative tasks

* (Generation (from scratch): learn to sample from the
distribution represented by the training set

* Unsupervised learning task




Generative tasks

« (Generation conditioned on class label

goldfish

indigo
bunting

redshank

saint
bernard

tiger
cat

Figure source



https://arxiv.org/pdf/1805.08318.pdf

Generative tasks

« (Generation conditioned on image (image-to-image
translation)

Labels to Street Scene Labels to Facade BW to Color

input output

Edges to Photo

output input output input output

P. Isola, J.-Y. Zhu, T. Zhou, A. Efros, Image-to-Image Translation with Conditional Adversarial
Networks, CVPR 2017



https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/

Designing a network for generative tasks

1. We need an architecture that can generate an image
« Recall upsampling architectures for dense prediction

T —> > > >

}
<

Random
seed or
latent code

Unconditional
generation



Designing a network for generative tasks

1. We need an architecture that can generate an image
« Recall upsampling architectures for dense prediction

« Sample from a simple distribution, e.g.
random noise.
* Learn transformation to training distribution.

t

Output: Sample from
training distribution

T —> > > > > —> Y
Generator
Random NetWOI’k
seed or
latent code f
Unconditional Input: Random noise Z
generation

lan Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014 Credit: cs231n, Stanford



Designing a network for generative tasks

1. We need an architecture that can generate an image
« Recall upsampling architectures for dense prediction

« Sample from a simple distribution, e.g.
random noise.
* Learn transformation to training distribution.

Output: Sample from
training distribution

A neural network can be

T —> > > > > |[— y *
used to represent Generator
. this comple?( Network
seedor transformation? s
Unconditional Input: Random noise Z
generation

lan Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014 Credit: cs231n, Stanford



Designing a network for generative tasks

1. We need an architecture that can generate an image
« Recall upsampling architectures for dense prediction

« Sample from a simple distribution, e.g.
random noise.
* Learn transformation to training distribution.

Output: Sample from
training distribution

A neural network can be

T —> > > > > — Y *
used to represent Generator
this complex Network
transformation? A

Image-to-image translation |nput; Random noise Z

lan Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014 Credit: cs231n, Stanford



Designing a network for generative tasks

1. We need an architecture that can generate an image
« Recall upsampling architectures for dense prediction

2. We need to design the right loss function



Learning to sample

4 =

Training data x ~ pgaia Generated samples x ~ Dyodel

We want to learn p,,,,4.1 that matches pg.:a

Adapted from Stanford CS231n



http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture12.pdf

Generative adversarial networks

« Train two networks with opposing objectives:
« Generator: learns to generate samples

* Discriminator: learns to distinguish between generated and real
samples

Random noise z

v

“Fake”

v

“Real,’

Figure adapted
from F. Fleuret

|. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial nets, NIPS 2014



http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://fleuret.org/ee559/ee559-slides-10-1-GAN.pdf

Generative adversarial networks

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

*

Discriminator Network

Fake Images S | Real Images
(from generator) | G" ‘ > (from training set)
Generator Network

*

Random noise 74

lan Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014 Fake and real images copyright Emily Denton et al. 2015. Credit: cs231n, Stanford



Generative adversarial networks

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

D tries to make

D(G(z)) near 0,

D(x) tries to be G tries to make

near 1 D(G(z)) near 1

D]ﬁ'erentlable
function D

T sampled from z sampled from

data model
leferentlable
function G

*

( Input noise z )

lan Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014 Fake and real images copyright Emily Denton et al. 2015. Credit: cs231n, Stanford




GAN objective

* The discriminator D (x) should output the probability that the
sample x is real

 Thatis, we want D(x) to be close to 1 for real data and close to O for
fake

« Expected conditional log likelihood for real and generated
data:

Exepya, 108D(x) + ]Eprgen log(l - D(x))
= Ex-p, .. logD(x) + E,.,log(1 —D(G(2)))

We seed the generator with noise z
drawn from a simple distribution p
(Gaussian or uniform)



GAN objective

V(G,D) = Ey.p,... logD(x) + E, plog(l — D(G(2)))

* The discriminator wants to correctly distinguish real and fake
samples:

D* = arg maxp V(G,D)

* The generator wants to fool the discriminator:
G* =argming V(G,D)

« Train the generator and discriminator jointly in a minimax
game



GAN objective: Theoretical properties

V(G,D) = Ey.p,... logD(x) + E, plog(l — D(G(2)))

« Assuming unlimited capacity for generator and discriminator
and unlimited training data:

* The objective min; max,V (G, D) is equivalent to Jensen-Shannon
divergence between pg,, and pg., and global optimum (Nash

equilibrium) is given by pgata = Pgen



GAN objective: Theoretical properties

V(G,D) = Ey.p,... logD(x) + E, plog(l — D(G(2)))

« Assuming unlimited capacity for generator and discriminator
and unlimited training data:

* The objective min; max,V (G, D) is equivalent to Jensen-Shannon
divergence between pg,, and pg., and global optimum (Nash

equilibrium) is given by pgata = Pgen

« |f at each step, D is allowed to reach its optimum given G, and G is
updated to decrease V (G, D), then p,.,, will eventually converge to

Pdata



GAN training

V(G,D) = Ey.p,... logD(x) + E, plog(l — D(G(2)))

 Alternate between
 Gradient ascent on discriminator:

D* = arg maxp V(G,D)
* Gradient descent on generator (minimize log-probability of
discriminator being right):
G* = argming V(G,D)
= arg ming E,_,log(1 — D(G(2)))
 In practice, do gradient ascent on generator (maximize log-probability
of discriminator being wrong):

G* = arg maxg E,.,log(D(G(2)))



Non-saturating GAN loss (NSGAN)

min,, E,_, log(1 —D(G(z))) vs. max, E, ,log(D(G(z)))

Minimize log-probability of Maximize log-probability of
discriminator being right discriminator being wrong



Non-saturating GAN loss (NSGAN)

min,, E,_, log(1 —D(G(z))) vs. max, E, ,log(D(G(z)))

/ \ —log(D(G(2))
Large gradients for \ |

_ Small gradients for
low-quality samples

high-quality samples

Low discriminator score ¥ High discriminator score
(low-quality samples) 0l5 1 (high-quality samples)

Want to learn /

from confidently
rejected sample
but gradients
here are small

log(1 — D(G(2))

These samples
already fool the
discriminator so we
don’t need large
gradients here

Figure source



https://cs.uwaterloo.ca/~mli/Deep-Learning-2017-Lecture7GAN.ppt

NSGAN training algorithm

* Update discriminator:
 Repeat for k steps:

« Sample mini-batch of noise samples z,, ..., z,,, and
mini-batch of real samples x4, ..., x,,

« Update parameters of D by stochastic gradient ascent on

1
EZ[logD(xm) +log(1 — D(G(zm)))]

« Update generator:
« Sample mini-batch of noise samples z4, ..., z,,,
« Update parameters of (¢ by stochastic gradient ascent on

1
— > 10g D(G (7))

* Repeat until happy with results



NSGAN training algorithm

* Update discriminator:
 Repeat for|k steps:

ample mini-batch of noise samples z4, ..., z,,, and
mini-batch of real samples x4, ..., x,,

Some find k=1 » Update parameters of D by stochastic gradient ascent on
more stable, 1

others use k > 1, —Z[lOgD(Xm) + log(l — D(G(Zm)))]

no best rule. m &

Recentwork (e.g.* Update generator:
Wasserstein GAN)  «  Sample mini-batch of noise samples z;, ..., z,

alleviates this : :
oroblem, better « Update parameters of (¢ by stochastic gradient ascent on

. 1
stability! EZ log D(G(z,,))
m

* Repeat until happy with results



GAN: Conceptual picture

« Update discriminator: push D(x4,:,) close to 1 and D(G(2))
close to O

The generator is a “black box” to the discriminator

-

G(2)

\

\

" D —— D(G(2))
- D(Xdata)

T

\xdata /

—
Z—— G
\




GAN: Conceptual picture

« Update generator: increase D(G(z))

 Requires back-propagating through the composed generator-
discriminator network (i.e., the discriminator cannot be a black box)

 The generator is exposed to real data only via the output of the
discriminator (and its gradients)

o N\
G(z)

7 ——> G > D — D(G(2))

. =




GAN: Conceptual picture

« Test time — the discriminator is discarded

/
Z— G » G(2)
\




GAN Demo

GAN Lab

MODEL OVERVIEW GRAPH »*

Generator

|
|
|
|
|
|
|
|
|
|

Data Distribution
Q N) D

[ Use pre-trained model

Epoch

002,900

LAYERED DISTRIBUTIONS

Gradients =.

o e s s o s s

Real

|

|

|

|

|

|

|

|

4 1‘1 |
O T kS ™ I [ |
\ | Discriminator

1 ] loss
Fake ﬂ

I E\j ——

Fake I

s s : - e

| |
Discriminator

|
Samples Prediction of I Generator
Samples | loss
|
I B \
|
| \
| | \
} | |
___________________________________ _J] Each dot is a 2D data sample: real samples; fake samples.
. Background colors of grid cells represent diseriminator's classifications.
Gradients

Samples in green regions are likely to be real; those in purple regions likely fake.

https://poloclub.github.io/ganlab/

METRICS
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P Generator's Loss
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https://poloclub.github.io/ganlab/

Original GAN results

MNIST digits Toronto Face Dataset

Nearest real image for
sample to the left

|. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial nets, NIPS 2014



http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

DCGAN

« Early, influential convolutional architecture for generator

3
A
128
256 !

: LB\ 5
Stride 2 [
Uniformly = il
distributed 100z - e
input ——————— Stride 2
Stride 2 16 .
. 32 Stride 2
Project and reshape CONV 1
CONV:2 CONV 3 64
Linear CONV 4 -
transformation G(2)

Four transposed convolution layers

with ReLU activations
Tanh activations

in the last layer

A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep
convolutional generative adversarial networks, ICLR 2016



https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf

DCGAN

« Early, influential convolutional architecture for generator

 Discriminator architecture:
« Don’t use pooling, only strided convolutions

« Use Leaky RelU activations (sparse gradients cause problems for
training)

« Use only one FC layer before the softmax output
« Use batch normalization after most layers (in the generator also)

A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep
convolutional generative adversarial networks, ICLR 2016



https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf

DCGAN results

Generated bedrooms after one epoch
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DCGAN results

Generated bedrooms after five epochs
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DCGAN results

More bedrooms

4 e P
R N, JAW - . :

Source: F. Fleuret




Problems with GAN training

+  Stability
 Parameters can oscillate or diverge, generator loss does not
correlate with sample quality

« Behavior very sensitive to hyperparameter selection



Problems with GAN training

 Mode collapse
* Generator ends up modeling only a small subset of the training data

Target

- S - "

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Source

Source


https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://arxiv.org/pdf/1701.00160.pdf

Some popular GAN flavors

« WGAN and improved WGAN (WGAN-GP)
« LSGAN



Wasserstein GAN (WGAN)

Motivated by Wasserstein or Earth mover’s distance, which is
an alternative to JS divergence for comparing distributions

In practice, use linear activation instead of sigmoid in the
discriminator and drop the logs from the objective:

ming maxp|Ey.p, D) —E, ,D(G(2))]

* Due to theoretical considerations, important to ensure smoothness of
discriminator
« This paper’s suggested method is clipping weights to fixed range

[—c,c]

M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, ICML 2017


https://arxiv.org/pdf/1701.07875.pdf

Wasserstein GAN (WGAN)

* Benefits (claimed)
« Better gradients, more stable training

1.0 T T T T T T T
\ —— Density of real

—— Density of fake |
—— GAN Discriminator
WGAN Critic

0.8 +

0.6 +

—0.2} Vanishing gradients
in regular GAN

-8 -6 -4 -2 0 2 4 6 8

M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, ICML 2017



https://arxiv.org/pdf/1701.07875.pdf

Wasserstein GAN (WGAN)

* Benefits (claimed)
Better gradients, more stable training

Objective function value is more meaningfully related to quality of
generator output

Orlglnal GAN dlvergence WGAN dlvergence

3.5 T
— DCGAN _ DCGAN

1.0 . 3.0

JSD estimate
o
[«]

Wasserstein estimate

W, i 5
0.0

1 1 1 1 1
0 50000 100000 150000 200000 250000 300000 350000 400000 0 100000 200000 300000 400000 500000 600000
Generator iterations Generator iterations

M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, ICML 2017



https://arxiv.org/pdf/1701.07875.pdf

Improved Wasserstein GAN (WGAN-GP)

* Weight clipping leads to problems with discriminator training
* |Improved Wasserstein discriminator loss:

E._ ., D&% —E D(x)

X~Pgen

X~Drea

+ A gy [(I7:D @)l — 1)?]

Unit norm gradient penalty on
points X obtained by interpolating
real and generated samples

|. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of Wasserstein GANs, NIPS 2017



https://arxiv.org/pdf/1704.00028.pdf

Improved Wasserstein GAN: Results

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)
Basehne (G: DCGAN D: DCGAN)

A TR B G PESigen

G: No BN and a constant number of filters 4, : DCGAN

No normalization in either G or D

E:Es B

Gated multlphcatlve nonlmearmes everywhere inGand D

tanh nonlinearities everywhere in G and D

!,g'

f and D

|. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of Wasserstein GANs, NIPS 2017



https://arxiv.org/pdf/1704.00028.pdf

Least Squares GAN (LSGAN)

« Use least squares cost for generator and discriminator
 Equivalent to minimizing Pearson y* divergence

D* = argminp|E,.p, (D(x) — D? + E,.,,(D(G(2)))?]

Push discrim. Push response on
response on real generated data close to 0
data close to 1

G* = argming E,_,(D(G(2)) — 1)?

Push response on
generated data close to 1

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, Least squares generative adversarial networks,
ICCV 2017



http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf

Least Squares GAN (LSGAN)

* Benefits (claimed)
. H|gher-quallty Images

' 1“"‘

(b) Generated images (112 x 112) by DCGAN:Ss.

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, Least squares generative adversarial networks,
ICCV 2017



http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf

Least Squares GAN (LSGAN)

* Benefits (claimed)
* Higher-quality images
 More stable and resistant to mode collapse

B
LSGANSs -

Regular p -
GANs .

Step 0 Step 5k Step 15k Step 25k Step 40k Target

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, Least squares generative adversarial networks,
ICCV 2017



http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf

Progressive GANs

Realistic face images up to 1024 x 1024 resolution
v |

T. Karras, T. Aila, S. Laine, J. Lehtinen. Progressive Growing of GANs for Improved

Quality, Stability, and Variation. ICLR 2018



https://openreview.net/pdf?id=Hk99zCeAb
https://openreview.net/pdf?id=Hk99zCeAb

Progressive GANs

« Key idea: train lower-resolution models, gradually add layers
corresponding to higher-resolution outputs

4x4

Training time: O days
4x4 resolution

z = random code
X = real image —Source

x' = generated image

Generator

~- N Discriminator

4x4

T. Karras, T. Aila, S. Laine, J. Lehtinen. Progressive Growing of GANs for Improved
Quality, Stability, and Variation. ICLR 2018
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StyleGAN

Built on top of Progressive GAN Latent % €z
Start with learned constant N"Hialize

Fully-connected
I

(instead of noise vector)

. ixel
Use a mapping network to ‘;"e?t’“;‘

. onv 53X
produce a style code w using ——
learned affine transformations A l 4x4
Use adapftive instance Upsample
normalization (AdalN): scale and Cony 33
bias each feature map using PixelNorm

|
learned style values Conv 3x3

. . PixelN
Add noise after each convolution ~ lmgxg
and before nonlinearity (enables
stochastic detail) (a) Traditional

(b) Style-based generator

Latent z € Z ‘ Noise
y Synthesis network ¢
Normalize Const 4x4%x512
lMapplngf o $ B]
network Sty €
A I——) AdaIN
I
FC Conv 3x3
FC style AlIN .
. 4x4
FC l
FC Upsample
FC '
= | Conv3x3 |
FlC style :
—>» AdaIN
I
Conv 3x3
+)€ <
style ¢‘ A
F—>{ AdaIN
l 8x8

T. Karras, S. Laine, T. Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019
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StyleGAN: Results

T. Karras, S. Laine, T. Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019
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StyleGAN: Bedrooms

T. Karras, S. Laine, T. Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019
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StyleGAN: Cars

T. Karras, S. Laine, T. Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019



https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf

Image-to-Image Translation Paired.




Image-to-lmage Translation

e Conditional GAN (cGAN)

* Cycle-Consistent Adversarial Network
(CycleGAN)

* Perceptual Cyclic-Synthesized Genefrative
Adversarial Networks (PCSGAN)

. lIsola, Phillip, et al. Image-to-image translation with conditional adversarial networks. CVPR 2017.

. Zhu, Jun-Yan, et al. Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial
Networks. CVPR 2017.

. Babu, Kancharagunta Kishan, and Shiv Ram Dubey. PCSGAN: Perceptual Cyclic-Synthesized Generative
Adversarial Networks for Thermal and NIR to Visible Image Transformation. Neurocomputing, 2020.

Paired
€I, Y;
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e W e N

o000

Unpaired




Image-to-Image Translation: GAN

1 — fake

{ — real




Image-to-Image Translation: Conditional GAN

1 D

—HHH—» real

Isola, Phillip, et al. Image-to-image translation with conditional adversarial networks. CVPR 2017.



Image-to-Image Translation: Conditional GAN

Labels to Street Scene Labels to Facade BW to Color

output
Edges to Photo

input output

Isola, Phillip, et al. Image-to-image translation with conditional adversarial networks. CVPR 2017.
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Image-to-Image Translation: Cycle GAN

% S_/ cycle-consistency
~—_— i . E T @ \...- et loss
. cycle-consistency | ... :

F loss .1&_

Zhu, Jun-Yan, et al. Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks. CVPR 2017.



Image-to-Image Translation: Cycle GAN

Start

Discriminator A GeR;rBator Decision [0,1]
Decision [0,1] | Generated B AE | Discriminator B
Cyclic_ A Gengtor
Generator !
""" B2A Cyclic_B
Discriminator A Decision [0,1]
Decision [0,1] Geg;ftor Discriminator B

https://hardikbansal.github.io/CycleGANBIlog/ Start



Image-to-Image Translation: Cycle GAN

que__t,,c Photos _ Zebras Horses 7 Summer T Winter

y m—

horse —» zebra winter —» summer

= A

Phtgraph ,4 Monet

Zhu, Jun-Yan, et al. Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks. CVPR 2017.



Image-to-Image Translation: PCSGAN

|
/i3
| Real

g {

Cycled

,
~

4

K.K. Babu and S.R. Dubey. PCSGAN: Perceptual Cyclic-Synthesized Generative Adversarial Networks for Thermal and NIR to
Visible Image Transformation. Neurocomputing, 2020.




Image-to-Image Translation: PCSGAN

1st Column - Input Image
2nd Column - Pix2Pix

34 Column — DualGAN

4th Column — CycleGAN
5th Column — PCSGAN

6th Column - Target Image

K.K. Babu and S.R. Dubey. PCSGAN: Perceptual Cyclic-Synthesized Generative Adversarial Networks for Thermal and NIR to

Visible Image Transformation. Neurocomputing, 2020.




Image-to-Image Translation: PCSGAN

Methods Metrics
SSIM MSE PSNR LPIPS MSSIM
Pix2pix 0.7555 74.6082 29.4587 0.089 0.7624
DualGAN 0.7638 75.4379 29.4201 0.099 0.7989
CycleGAN 0.7648 76.1482 29.351 0.088 0.7687
PS2GAN 0.8087 67.869 29.9676 0.064 0.8242
PAN 0.8125 69.0331 29.84 0.069 0.8281
PCSGAN (Ours) | 0.8275 | 64.6442 | 30.1686 | 0.059 | 0.8411

Results comparison over the WHU-IIP face dataset.
SSIM - Structural Similarity Index Measure

MSE - Mean Square Error
PSNR - Peak Signal Noise to Ratio
LPIPS - Learned Perceptual Image Patch Similarity
MSSIM - Multi-scale SSIM

K.K. Babu and S.R. Dubey. PCSGAN: Perceptual Cyclic-Synthesized Generative Adversarial Networks for Thermal and NIR to
Visible Image Transformation. Neurocomputing, 2020.




GAN: Other Appl|cat|ons Generate Cartoon Characters

. N ﬁ}«/\w . b‘é‘\
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Generate Cartoon Characters

Example of GAN-Generated Anime
Character Faces.

Taken from Towards the Automatic
Anime Characters Creation with
Generative Adversarial Networks,
2017.

a2 ..w.é\..“

https://machinelearningmastery.com/impressive—appIications—of—generative-adversarlal networks/



GAN: Other Applications: Text-to-Image Translation

. The bird is A bird with a
Text-to-Image Translation Teswe This bird isred  short and medium orange
(tethima ge) deschtion and brown in stubby with bill white body
P color, with a yellow on its gray wings and
stubby beak body webbed feet
Example of Textual 64x64
Descriptions and GAN- GAN-INT-CLS
Generated Photographs of
Birds
Taken from StackGAN: Text  |5g,128
to Photo-realistic Image GAWWN
Synthesis with Stacked
Generative Adversarial
Networks, 2016.
256x256
StackGAN

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

This small
black bird has
a short, slightly
curved bill and
long legs

A small bird
with varying
shades of
brown with
white under the
eyes

A small yellow
bird with a
black crown
and a short
black pointed
beak

This small bird
has a white
breast, light
grey head, and
black wings
and tail



GAN: Other Applications: Face Frontal View Generation

Face Frontal View Generation

FF

Example of GAN-based Face Frontal View Photo Generation
Taken from Beyond Face Rotation: Global and Local Perception
GAN for Photorealistic and Identity Preserving Frontal View
Synthesis, 2017.

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/



GAN: Other Applications: Face Aging

Face Aging |
Reconstruction .
Fisitiil Optimization Face Aging
Original DIt 1 I

Reconstruction

Pixelwise IpP : 30-39 40-49 50-59

Example of Photographs of Faces Generated With a GAN With Different Apparent Ages.
Taken from Face Aging With Conditional Generative Adversarial Networks, 2017.

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/



GAN: Other Applications: De-raining

De-raining

Example of Using a GAN to Remove
Rain From Photographs

Taken from Image De-raining Using
a Conditional Generative
Adversarial Network

(©)

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/



GAN: Other Applications: Photo Inpamtlng

Photo Inpainting

Example of GAN-Generated
Photograph Inpainting Using
Context Encoders.

Taken from Context Encoders:
Feature Learning by Inpainting
describe the use of GANs,
specifically Context Encoders, 2016.

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/



GAN: Other Applications: Super Resolution

bicubic SRResNet SRGAN original

Super Resolution

Example of GAN-Generated Images
With Super Resolution.

Taken from Photo-Realistic Single
Image Super-Resolution Using a
Generative Adversarial Network,
2016.

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/



GAN: Other Applications: Dehazing

DehazeNet: An
End-to-End
System for Single
Image Haze
Removal

Feature Extraction

©
(QQQQ ++ ++ 0000)
0

16 Conv 3 X5X5
4 Maxout 4X1X1

Multi-scale Mapping

Local Extremum Non-linear Regression

| O Y ) T (R ) I |

I =]

W
— -

BReLU

L
N

§ G R S R B S AR BGES |

T R R TR T TR R PR

16 Conv 4X3X3
16 Conv 4X5X5
16 Conv 4X7X7

Transmission #(x)

Conv 48X 6X6
MaxPool 1X7X7 BReLU

https://caibolun.github.io/DehazeNet/



“The GAN Zoo”

= 3D-ED-GAN - Shape Inpainting using 3D Generative Adversarial Network and Recurrent Convolutional Metworks

s 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 30 Generative-Adversarial Medeling (github)

« 3D-IWGAN - Improved Adversarial Systems for 30 Object Generation and Reconstruction (github)

* 3D-RecGAN - 3D Object Reconstruction from a Single Depth View with Adversarial Learning (github)

s ABC-GAMN - ABC-GAN: Adaptive Blur and Control for improved training stability of Generative Adversarial Networks
{github)

* ABC-GAN - GANs for LIFE: Generative Adversarial Metwaorks for Likelihood Free Inference

= AC-GAM - Conditicnal Image Synthesis With Auxiliary Classifier GANs

s acGAN - Face Aging With Conditional Generative Adversarial Metworks

s ACtubl - ACtuAL Actor-Critic Under Adversarial Learning

= AdaGAN - AdaGAN: Boosting Generative Madels

s AdvGAN - Generating adversarial examples with adversarial networks

= AE-GAM - AE-GAM: adversanial eliminating with GAN

* ABGAN - Learning Inverse Mapping by Autcencoder based Generative Adversarial Nets

¢ AfFGAN - Amortised MAP Inference for Image Super-resolution

= AL-CGAM - Learning to Generate Images of Cutdoor Scenes from Attributes and Semantic Layouts

s ALl - Adversarially Learned Inference (githukb)

= AlignGAN - AlignGAN: Learning to Align Cross-Domain Images with Conditional Generative Adversarial Networks

= AM-GAN - Activation Maximization Generative Adversarial Nets

s AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery

= APE-GAN - APE-GAN: Adversarial Perturbation Elimination with GAN

* ARAE - Adversarially Regularized Autocencoders for Generating Discrete Structures (github)

+ ARDA - Adversanal Representation Learning for Domain Adaptation

= ARIGAN - ARIGAM: Synthetic Arabidopsis Plants using Generative Adversarial Metwork

s AnGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs

« AHGAN - Arbitrary Facial Attribute Editing: Cnly Change What You Want

= AttnGAN - AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Metworks

s b-GAN - Generative Adversarial Nets from a Density Ratio Estimation Perspective
= Bayesian GAN - Deep and Hierarchical Implicit Madels

https://github.com/hindupuravinash/the-gan-zoo

Bayesian GAN - Bayesian GAN (github)

BCGAN - Bayesian Conditional Generative Adverserial Metworks

BCGAN - Bidirectional Conditional Generative Adversarial netwaorks

BEGAM - BEGANM: Boundary Equilibrium Generative Adversarial Metworks
BGAN - Binary Generative Adversarial Metworks for Image Retrieval (github)
BicycleGAN - Toward Multimedal Image-to-Image Translation (githukb)
BiGAN - Adversarial Feature Learning

B5-GAN - Boundary-5eeking Generative Adversarial Metworks

C-GAM - Face Aging with Contextual Generative Adversarial Nets
C-RMNMN-GAN - C-RNN-GAM: Continuous recurrent neural networks with adversarial training (github)
CA-GAN - Composition-aided Sketch-realistic Portrait Generation

CaloGAM - CaloGAM: Simulating 30 High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with
Generative Adversarial Networks (githuk)

CAM - CAN: Creative Adversarial Metworks, Generating Art by Learning About Styles and Deviating from Style Norms
CapsuleGAN - CapsuleGAN: Generative Adversarial Capsule Netwaork

CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
CatGAM - CatGAMN: Coupled Adversarial Transfer for Domain Generation

CausalGAN - CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training

CC-GAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Metworks (github)
CDcGAN - Simultanegusly Color-Depth Super-Resclution with Conditional Generative Adversanial Network
CFG-GAN - Composite Functional Gradient Learning of Generative Adversarial Models

CGANM - Conditional Generative Adversarial Nets

CGANM - Controllable Generative Adversarial Metwork

Chekhow GAM - An Cnline Learning Approach to Generative Adversarial Metworks

CipherGAN - Unsupervised Cipher Cracking Using Discrete GANs

CM-GAM - CM-GANs: Cross-modal Generative Adversanial Metworks for Commeon Representation Learning
CoAtt-GAN - Are You Talking to Me? Reasoned Visual Dialog Generation through Adversarial Learning
CoGAN - Coupled Generative Adversarial Networks

ComboGAN - ComboGAN: Unrestrained Scalability for Image Domain Translation (github)



(i 77
e O O = DPGAN - Differentially Private Generative Adversarial Network

ConceptGAN - Learning Compaositional Visual Concepts with Mutual Consistency * DR-GAN - Representation Learning by Rotating Your Faces

Conditional cycleGAN - Conditional CycleGAN for Attribute Guided Face Image Generation * DRAGAN - How to Train Your DRAGAN (github)

constrast-GAN - Generative Semantic Manipulation with Contrasting GAN = DRPAN - Discriminative Region Proposal Adversarial Metworks for High-Quality Image-to-Image Translation
Context-RNN-GAN - Contextual RMN-GANs for Abstract Reasoning Diagram Generation * DSP-GAN - Depth Structure Preserving Scene Image Generation

Coulomb GAN - Coulomb GANSs: Provably Optimal Nash Equilibria via Potential Fields * DTN - Unsupervised Cross-Domain Image Generation

Cover-GAN - Generative Stegancgraphy with Kerckhoffs' Principle based on Generative Adversarial Networks * DualGAN - DualGAN: Unsupervised Dual Leaming for Image-to-Image Translation

Cramér GAM - The Cramer Distance as a Solution to Biased Wasserstein Gradients * Dualing GAN - Dualing GANs

Cross-GAN - Crossing Generative Adversarial Networks for Cross-View Person Re-identification = Dynamics Transfer GAN - Dynarmics Transfer GAN: Generating Video by Transferring Arbitrary Tempaoral Dynamics from a

crVAE-GAN - Channel-Recurrent Variational Autoencoders Source Video to a Single Target Image

C5-GANM - Improving Meural Machine Translation with Conditional Sequence Generative Adversarial Nets * EBGAN - Energy-based Generative Adversarial Network
CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

CycleGANM - Unpaired Image-to-Image Translaticn using Cycle-Consistent Adversarial Networks (githukb)

¢ 2cGAN - eCommerceGANM @ A Generative Adversarial Metwork for E-commerce
= EDV/GAN - Stabilizing Training of Generative Adversarial Networks through Regularization

D-GAN - Differential Generative Adversarial Networks: Synthesizing Nen-linear Facial Variations with Limited Numt® EGAN - Enhanced Experience Replay Generation for Efficient Reinforcement Leaming

Training Data s EnergyWGAN - Energy-relaxed Wassertein GANs (EnergyWGAN): Towards More Stable and High Resolution Image

D2GAN - Dual Discriminatar Generative Adversarnial Mets Generation

DA-GAN - DA-GAN: Instance-level Image Translation by Deep Attention Generative Adversanal Metwaorks (with EXGAN - Bye In-Painting with Exemplar Generative Adversarial Networks

Supplementary Materials) * ExposureGAM - Exposure: A White-Box Photo Post-Processing Framewaork (github)

DAGAN - Data Augmentation Generative Adversarial Networks ¢ ExprGAN - ExprGAN: Facial Expression Editing with Cantrollable Expression Intensity

DAM - Distributional Adversarial Networks * f-CLSWGAN - Feature Generating Networks for Zero-Shot Learning

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adwversarial Networks (githut® f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
DeblurGAN - DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks (github) * FF-GAN - Towards Large-Pose Face Frontalization in the Wild

Defense-GAN - Defense-GAM: Protecting Classifiers Against Adversarial Attacks Using Generative Models * FIGAN - Frame Interpolation with Multi-Scale Deep Loss Functions and Generative Adversarial Networks
DeliGAN - DeliGAN : Generative Adversarial Netwarks for Diverse and Limited Data (github) * Fila-GAN - Synthesizing Filamentary Structured Images with GANs

DF-GAM - Learning Disentangling and Fusing Netwarks for Face Completion Under Structured Occlusions * First Order GAN - First Order Generative Adversarial Networks

DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks * Fisher GAN - Fisher GAN

DistanceGAN - One-Sided Unsupervised Domain Mapping * Flow-GAN - Flow-GAN: Bridging implicit and prescribed learning in generative models

OM-GAM - Dual Mation GAN for Future-Flow Embedded Video Prediction * FSEGAN - Exploring Speech Enhancement with Generative Adversarial Networks for Rebust Speech Recognition
DMA-GAN - DNA-GAN: Learning Disentangled Representations from Multi-Attribute Images = FTGAN - Hierarchical Videc Generation from Crthogonal Information: Cptical Flow and Texture

dp-GAN - Differentially Private Releasing via Deep Generative Model * FusedGAM - Semi-supervised FusedGAN for Conditional Image Generation

DP-GAN - DP-GAN: Diversity-Promoting Generative Adversarial Metwork for Generating Informative and Diversified Text

https://github.com/hindupuravinash/the-gan-zoo



“The GAN Zoo”

FusionGAM - Learning to Fuse Music Genres with Generative Adversarial Dual Learning

G2-GAN - Geometry Guided Adversarial Facial Expression Synthesis

GAGAMN - GAGAN: Geometry-Aware Generative Adversenal Metwarks

GAMMN - Generative Adversarial Mapping Netwaorks

GAN - Generative Adversarial Metworks (githulb)

GAMN-ATY - A Movel Approach to Artistic Textual Visualization via GAN

GAN-CLS - Generative Adversarial Text to Image Synthesis (github)

GAN-RS - Towards Qualitative Advancement of Underwater Machine Vision with Generative Adversarial Metworks
GAM-sep - GANs for Biological Image Synthesis (github)

GAN-VFS - Generative Adversarial Metwork-based Synthesis of Visible Faces from Polarimetric Thermal Faces
GAMNCS - Deep Generative Adversarial Metworks for Compressed Sensing Automates MEI

GANDI - Guiding the search in continuous state-action spaces by learning an action sampling distribution from off-target
samples

GANG - GANGs: Generative Adversarial Metwork Games

GAMosaic - GAMosaic: Mosaic Creation with Generative Texture Manifolds A n d M a ny M O re
GAP - Context-Aware Generative Adversarial Privacy eeoesesescscccennensns
GAWWN - Learning What and Where to Draw (github)

GC-GAN - Geometry-Contrastive Generative Adversarial Network for Facial Expression Synthesis

GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data (github)

GeoGAN - Generating Instance Segmentation Annotation by Gecmetrny-guided GAN

Gecmetric GAN - Geometric GAM

GLCA-GAMN - Global and Local Consistent Age Generative Adversarial Networks

GMAN - Generative Multi-Adversarial Metworks

GMM-GAN - Towards Understanding the Dynamics of Generative Adversarial Networks

GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

GP-GAN - GP-GAN: Towards Realistic High-Resclution Image Elending (githukb)

GP-GAN - GP-GAMN: Gender Preserving GAM for Synthesizing Faces from Landmarks

GPU - A generative adversarial framework for positive-unlabeled classification

GRAN - Generating images with recurrent adversarial networks (github)

https://github.com/hindupuravinash/the-gan-zoo



GANSs: Things to Remember

Take game-theoretic approach: learn to generate from training distribution
through 2-player game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can’t solve inference queries such as p(x), p(z|x)

Active areas of research:

- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many
others)

- Conditional GANs, GANs for all kinds of applications



Thank you
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