Indian Institute of Information Technology, Allahabad

Generative Adversarial Networks

Ву

Dr. Satish Kumar Singh & Dr. Shiv Ram Dubey
Computer Vision and Biometrics Lab
Department of Information Technology
Indian Institute of Information Technology, Allahabad

TEAM

Computer Vision and Biometrics Lab (CVBL)

Department of Information Technology

Indian Institute of Information Technology Allahabad

Course Instructors

Dr. Satish Kumar Singh, Associate Professor, IIIT Allahabad (Email: sk.singh@iiita.ac.in)

Dr. Shiv Ram Dubey, Assistant Professor, IIIT Allahabad (Email: srdubey@iiita.ac.in)

DISCLAINER

The content (text, image, and graphics) used in this slide are adopted from many sources for academic purposes. Broadly, the sources have been given due credit appropriately. However, there is a chance of missing out some original primary sources. The authors of this material do not claim any copyright of such material.

Outline

- Unsupervised Learning
- Generative tasks
- Generative Adversarial Networks
- GAN Objective Function
- GAN Variants
- Image-to-Image Translation
- GANs: Recent Trends

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

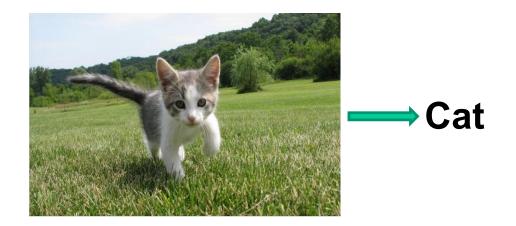
Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.



Classification

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.



DOG, DOG, CAT

Object Detection

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Semantic Segmentation

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

A cat sitting on a suitcase on the floor

Image Captioning

Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

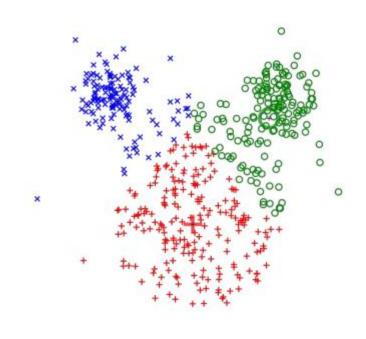
Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.



K-Means Clustering

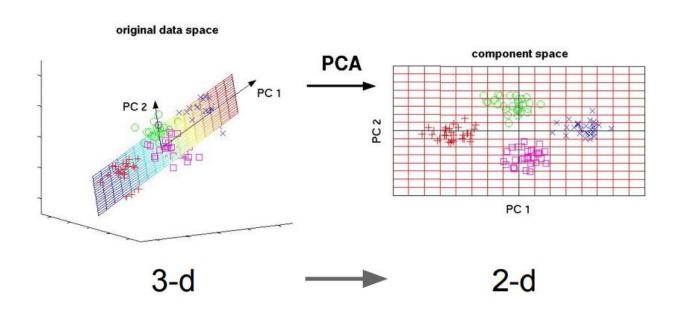
Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.



(Principal Component Analysis)
Dimensionality Reduction

Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Output: Sample from training distribution

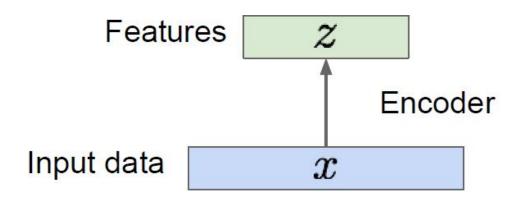
Generator Network

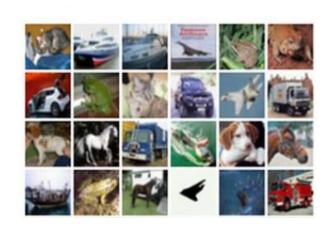
Input: Random noise

Z

Generative Advarsarial Networks (Distribution learning)

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data





Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

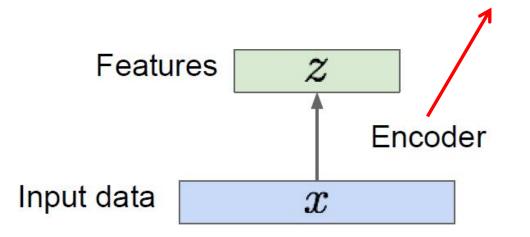
Originally: Linear +

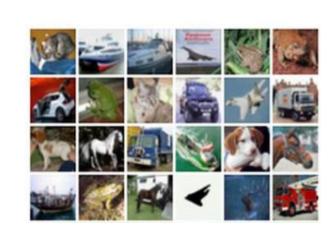
nonlinearity (sigmoid)

Later: Deep, fully-

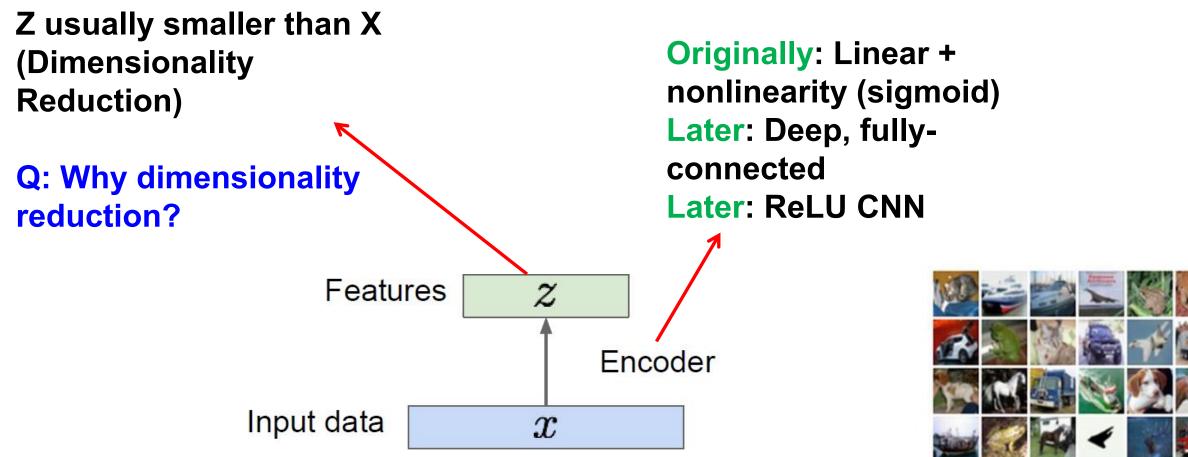
connected

Later: ReLU CNN

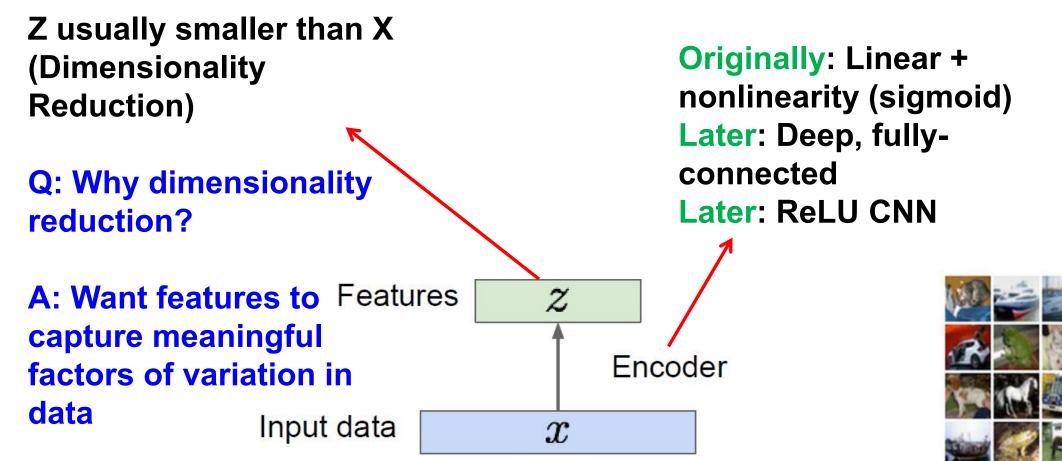




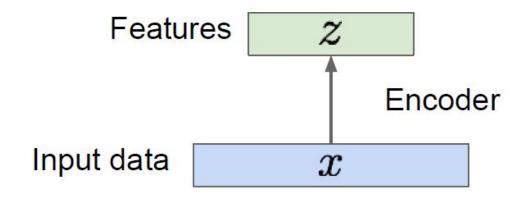
Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

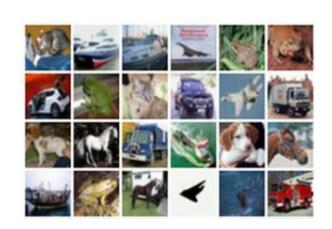


Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data



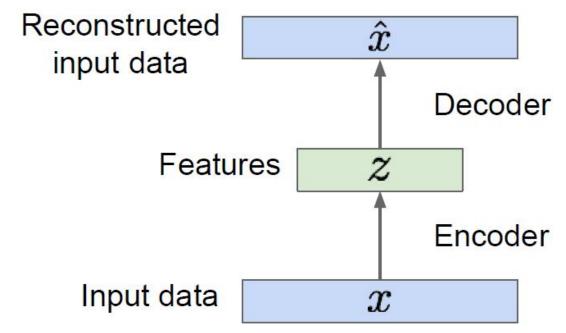
How to learn this feature representation?

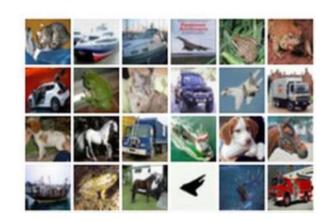




How to learn this feature representation?

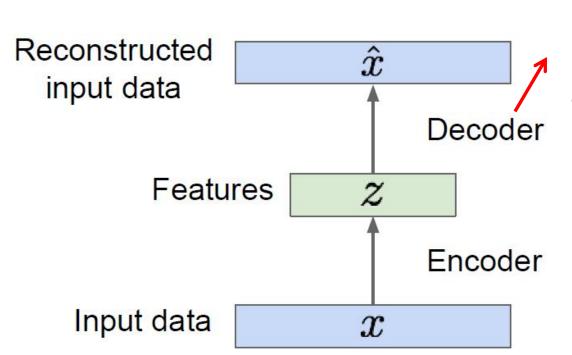
Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself





How to learn this feature representation?

Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself



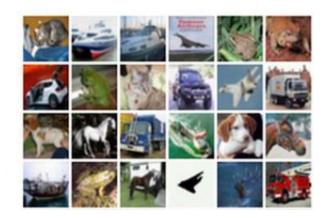
Originally: Linear +

nonlinearity (sigmoid)

Later: Deep, fully-

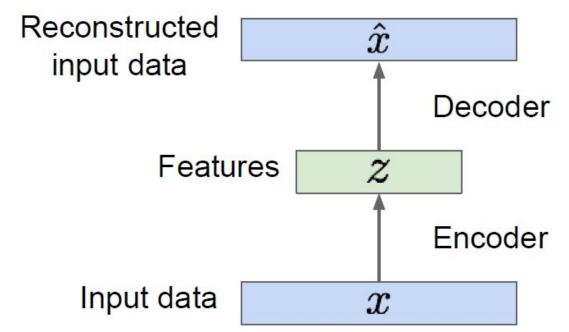
connected

Later: ReLU CNN



How to learn this feature representation?

Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself



Reconstructed Data

Decoder: 4-layer upconv

Encoder: 4-layer conv

Train such that features can be used to reconstruct original data

L2 Loss Function $||x - \hat{x}||^2$ Reconstructed \hat{x} input data Decoder Features Encoder Input data x

Reconstructed Data

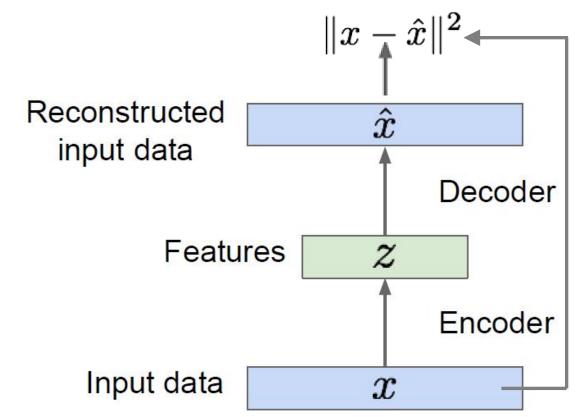
Decoder: 4-layer upconv

Encoder: 4-layer conv

Train such that features can be used to reconstruct original data

Doesn't use labels!

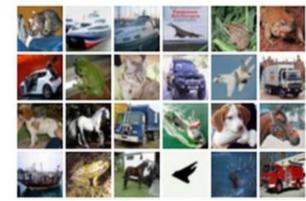
L2 Loss Function

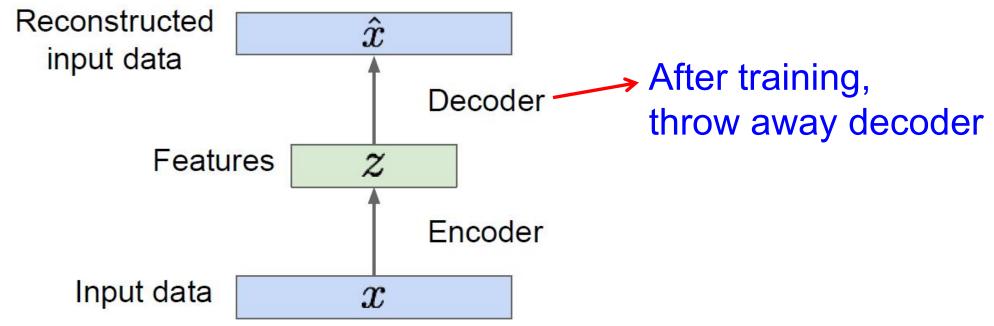


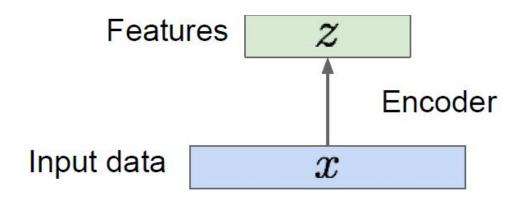
Reconstructed Data

Decoder: 4-layer upconv

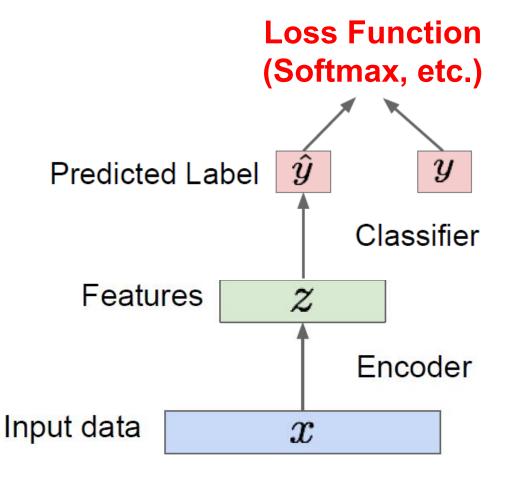
Encoder: 4-layer conv



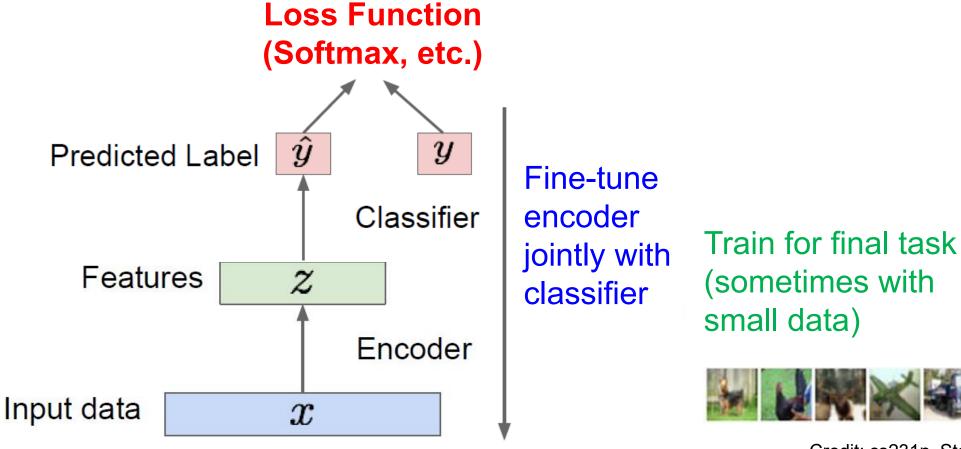




Encoder can be used to initialize a supervised model

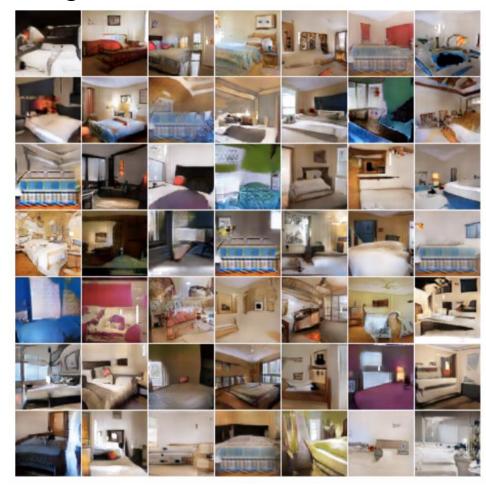


Encoder can be used to initialize a supervised model



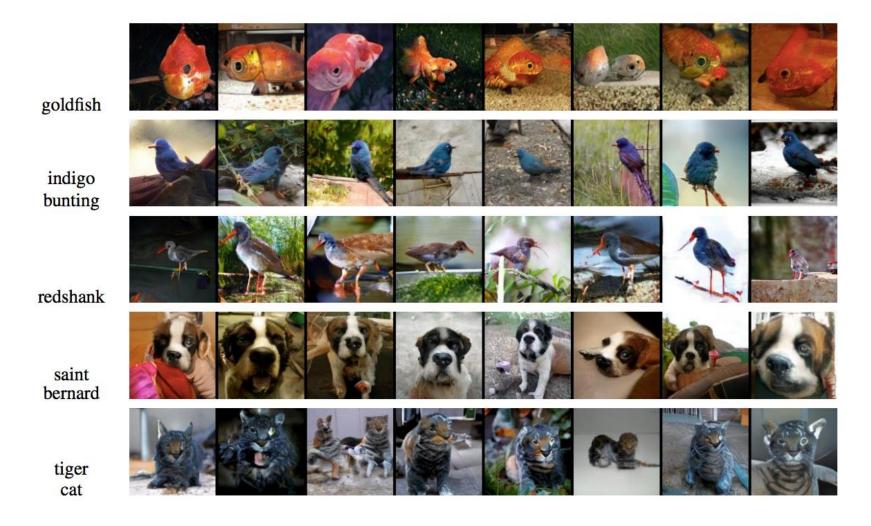
Generative tasks

- Generation (from scratch): learn to sample from the distribution represented by the training set
 - Unsupervised learning task



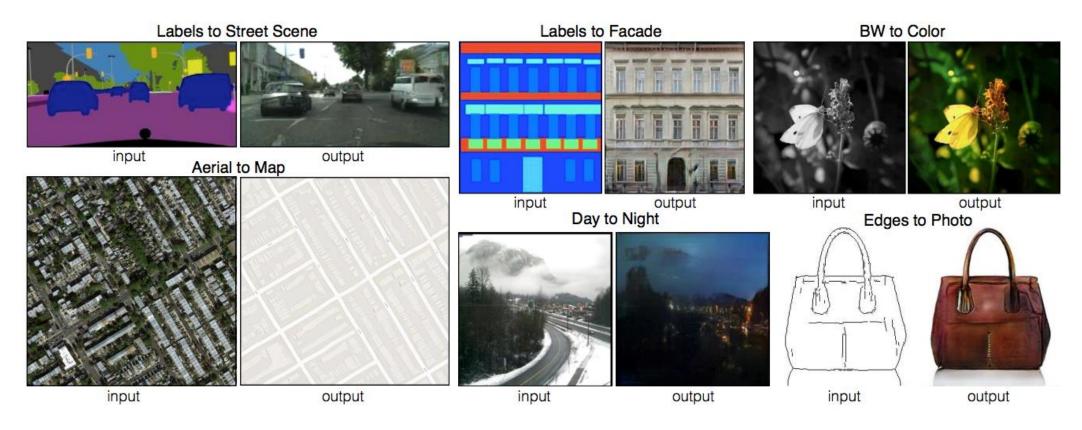
Generative tasks

Generation conditioned on class label

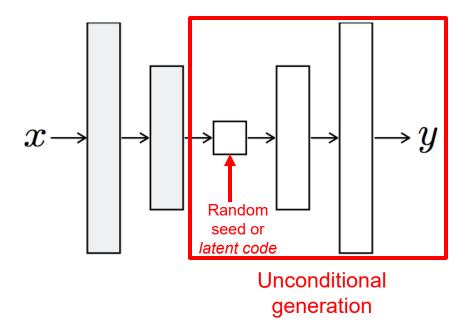


Generative tasks

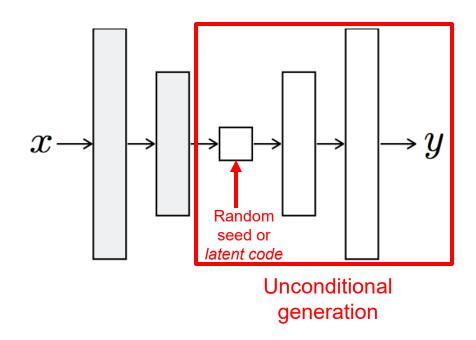
Generation conditioned on image (image-to-image translation)

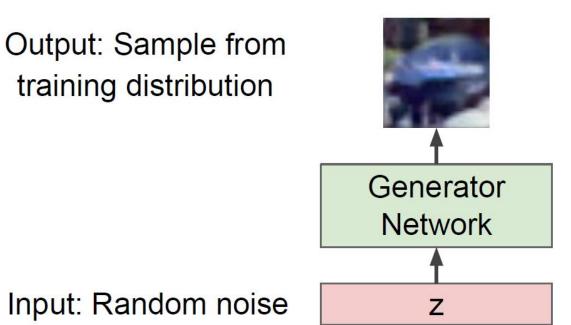


- 1. We need an architecture that can generate an image
 - Recall upsampling architectures for dense prediction

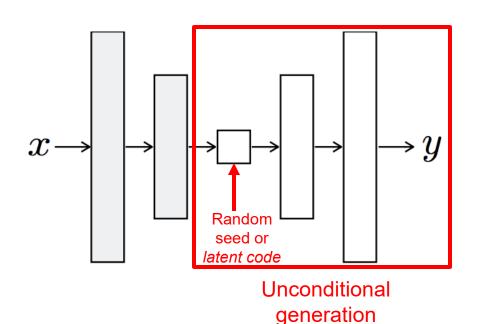


- 1. We need an architecture that can generate an image
 - Recall upsampling architectures for dense prediction
 - Sample from a simple distribution, e.g. random noise.
 - Learn transformation to training distribution.





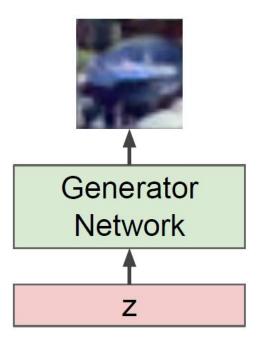
- 1. We need an architecture that can generate an image
 - Recall upsampling architectures for dense prediction
 - Sample from a simple distribution, e.g. random noise.
 - Learn transformation to training distribution.



Output: Sample from training distribution

A neural network can be used to represent this complex transformation?

Input: Random noise



- 1. We need an architecture that can generate an image
 - Recall upsampling architectures for dense prediction
 - Sample from a simple distribution, e.g. random noise.
 - Learn transformation to training distribution.

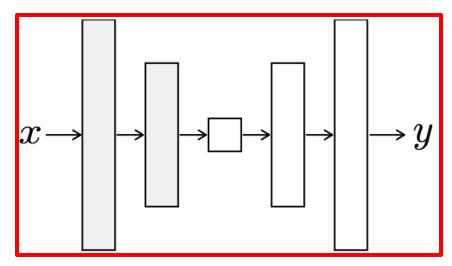
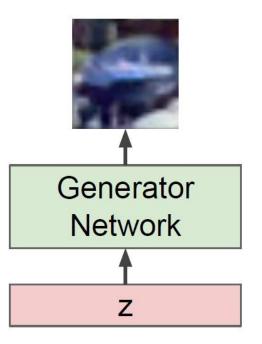


Image-to-image translation

Output: Sample from training distribution

A neural network can be used to represent this complex transformation?

Input: Random noise



- 1. We need an architecture that can generate an image
 - Recall upsampling architectures for dense prediction
- 2. We need to design the right loss function

Learning to sample

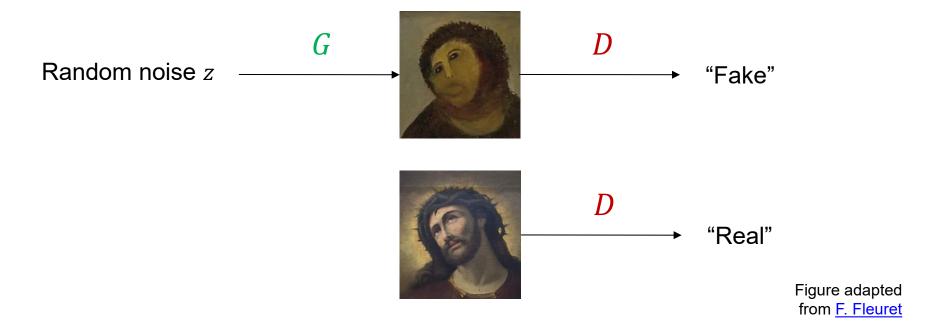
Training data $x \sim p_{\text{data}}$

Generated samples $x \sim p_{\text{model}}$

We want to learn p_{model} that matches p_{data}

Generative adversarial networks

- Train two networks with opposing objectives:
 - Generator: learns to generate samples
 - Discriminator: learns to distinguish between generated and real samples

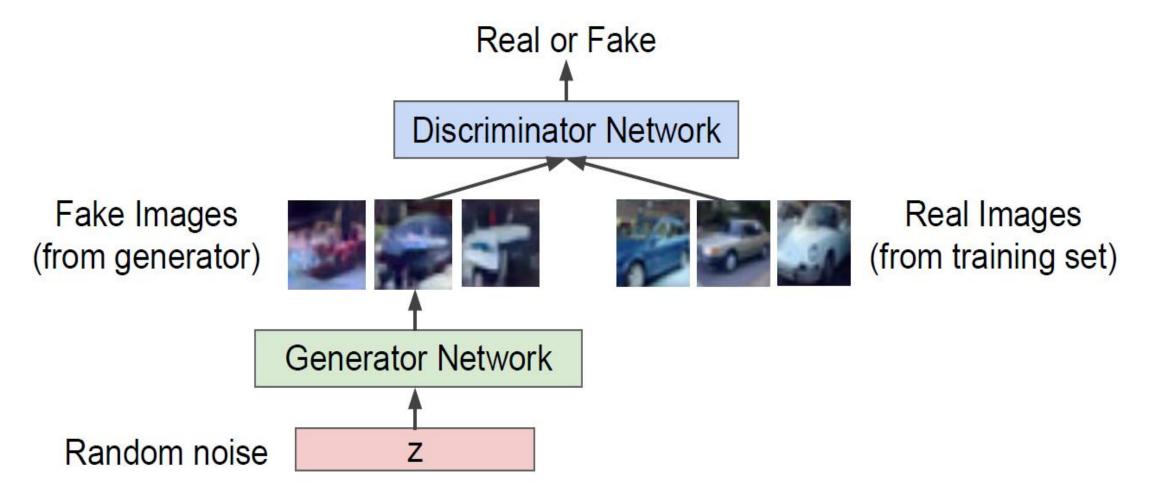


I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, <u>Generative adversarial nets</u>, NIPS 2014

Generative adversarial networks

Generator network: try to fool the discriminator by generating real-looking images

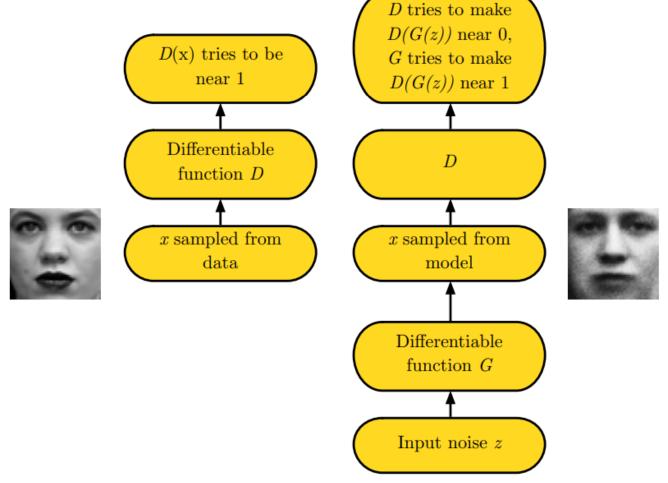
Discriminator network: try to distinguish between real and fake images



Generative adversarial networks

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images



GAN objective

- The discriminator D(x) should output the probability that the sample x is real
 - That is, we want D(x) to be close to 1 for real data and close to 0 for fake
- Expected conditional log likelihood for real and generated data:

$$\mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{x \sim p_{\text{gen}}} \log (1 - D(x))$$

$$= \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{z \sim p} \log (1 - D(G(z)))$$

We seed the generator with noise z drawn from a simple distribution p (Gaussian or uniform)

GAN objective

$$V(G, D) = \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{z \sim p} \log(1 - D(G(z)))$$

 The discriminator wants to correctly distinguish real and fake samples:

$$D^* = \arg \max_D V(G, D)$$

The generator wants to fool the discriminator:

$$G^* = \arg\min_G V(G, D)$$

Train the generator and discriminator jointly in a minimax game

GAN objective: Theoretical properties

$$V(G, D) = \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{z \sim p} \log(1 - D(G(z)))$$

- Assuming unlimited capacity for generator and discriminator and unlimited training data:
 - The objective $\min_G \max_D V(G, D)$ is equivalent to Jensen-Shannon divergence between $p_{\rm data}$ and $p_{\rm gen}$ and global optimum (Nash equilibrium) is given by $p_{\rm data} = p_{\rm gen}$

GAN objective: Theoretical properties

$$V(G, D) = \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{z \sim p} \log(1 - D(G(z)))$$

- Assuming unlimited capacity for generator and discriminator and unlimited training data:
 - The objective $\min_G \max_D V(G, D)$ is equivalent to Jensen-Shannon divergence between $p_{\rm data}$ and $p_{\rm gen}$ and global optimum (Nash equilibrium) is given by $p_{\rm data} = p_{\rm gen}$
 - If at each step, D is allowed to reach its optimum given G, and G is updated to decrease V(G,D), then $p_{\rm gen}$ will eventually converge to $p_{\rm data}$

GAN training

$$V(G, D) = \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{z \sim p} \log(1 - D(G(z)))$$

- Alternate between
 - Gradient ascent on discriminator:

$$D^* = \arg\max_D V(G, D)$$

 Gradient descent on generator (minimize log-probability of discriminator being right):

$$G^* = \arg\min_{G} V(G, D)$$

= $\arg\min_{G} \mathbb{E}_{z \sim p} \log(1 - D(G(z)))$

 In practice, do gradient ascent on generator (maximize log-probability of discriminator being wrong):

$$G^* = \arg \max_G \mathbb{E}_{z \sim p} \log(D(G(z)))$$

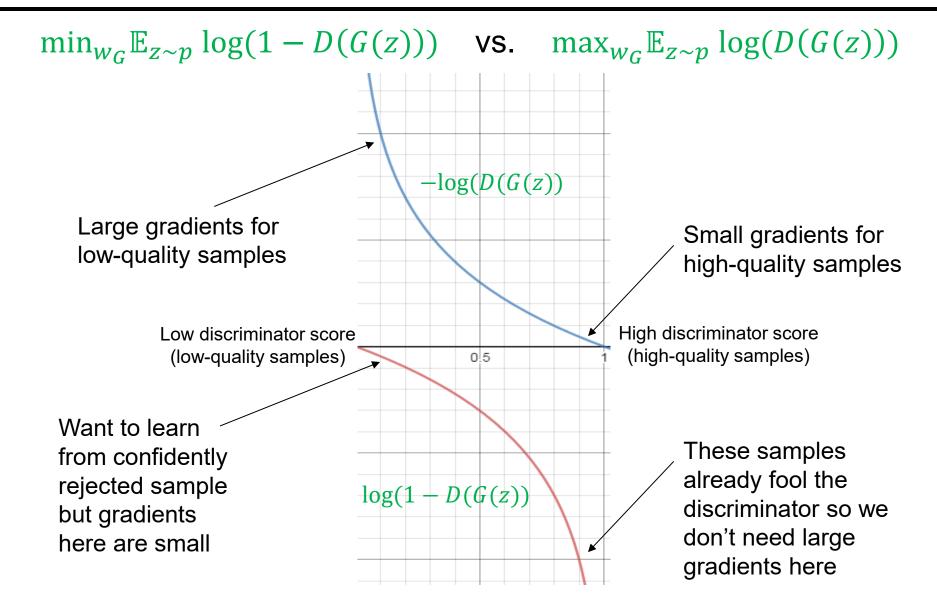
Non-saturating GAN loss (NSGAN)

$$\min_{w_G} \mathbb{E}_{z \sim p} \log(1 - D(G(z)))$$
 vs. $\max_{w_G} \mathbb{E}_{z \sim p} \log(D(G(z)))$

Minimize log-probability of discriminator being right

Maximize log-probability of discriminator being wrong

Non-saturating GAN loss (NSGAN)



NSGAN training algorithm

- Update discriminator:
 - Repeat for k steps:
 - Sample mini-batch of noise samples $z_1, ..., z_m$ and mini-batch of real samples $x_1, ..., x_m$
 - Update parameters of D by stochastic gradient ascent on

$$\frac{1}{m} \sum_{m} [\log D(x_m) + \log(1 - D(G(z_m)))]$$

- Update generator:
 - Sample mini-batch of noise samples $z_1, ..., z_m$
 - Update parameters of G by stochastic gradient ascent on

$$\frac{1}{m}\sum_{m}\log D(G(z_m))$$

Repeat until happy with results

NSGAN training algorithm

- Update discriminator:
 - Repeat for k steps:
 - Sample mini-batch of noise samples $z_1, ..., z_m$ and mini-batch of real samples $x_1, ..., x_m$
 - Update parameters of D by stochastic gradient ascent on

$$\frac{1}{m}\sum_{m}\left[\log D(x_m) + \log(1 - D(G(z_m)))\right]$$

- Some find k=1 more stable, others use k > 1, no best rule.
- Recent work (e.g. Wasserstein GAN) alleviates this problem, better stability!

Update generator:

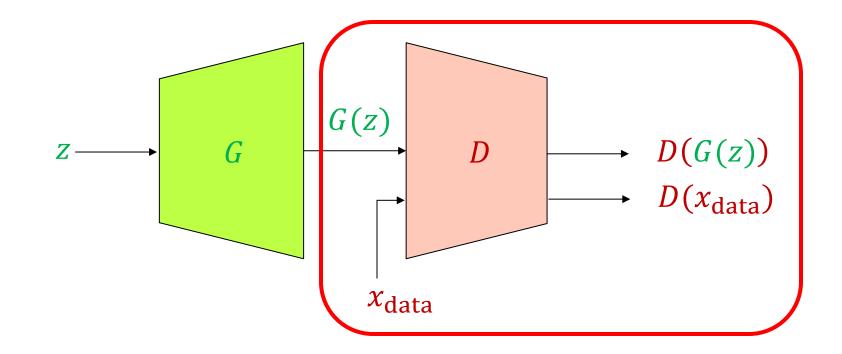
- Sample mini-batch of noise samples $z_1, ..., z_m$
- Update parameters of G by stochastic gradient ascent on

$$\frac{1}{m}\sum_{m}\log D(G(z_m))$$

Repeat until happy with results

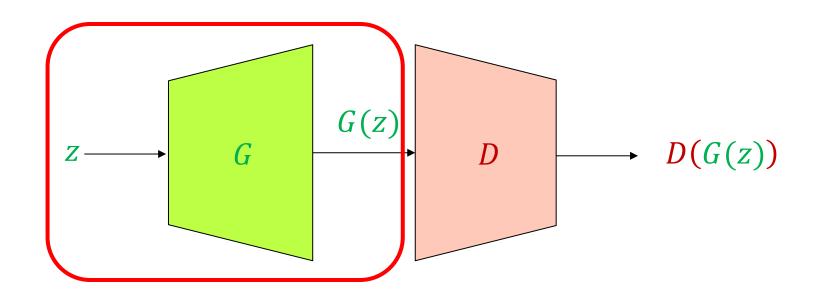
GAN: Conceptual picture

- Update discriminator: push $D(x_{\text{data}})$ close to 1 and D(G(z)) close to 0
 - The generator is a "black box" to the discriminator



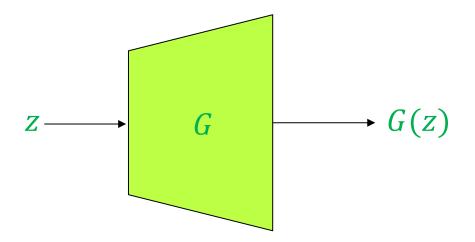
GAN: Conceptual picture

- Update generator: increase D(G(z))
 - Requires back-propagating through the composed generatordiscriminator network (i.e., the discriminator cannot be a black box)
 - The generator is exposed to real data only via the output of the discriminator (and its gradients)

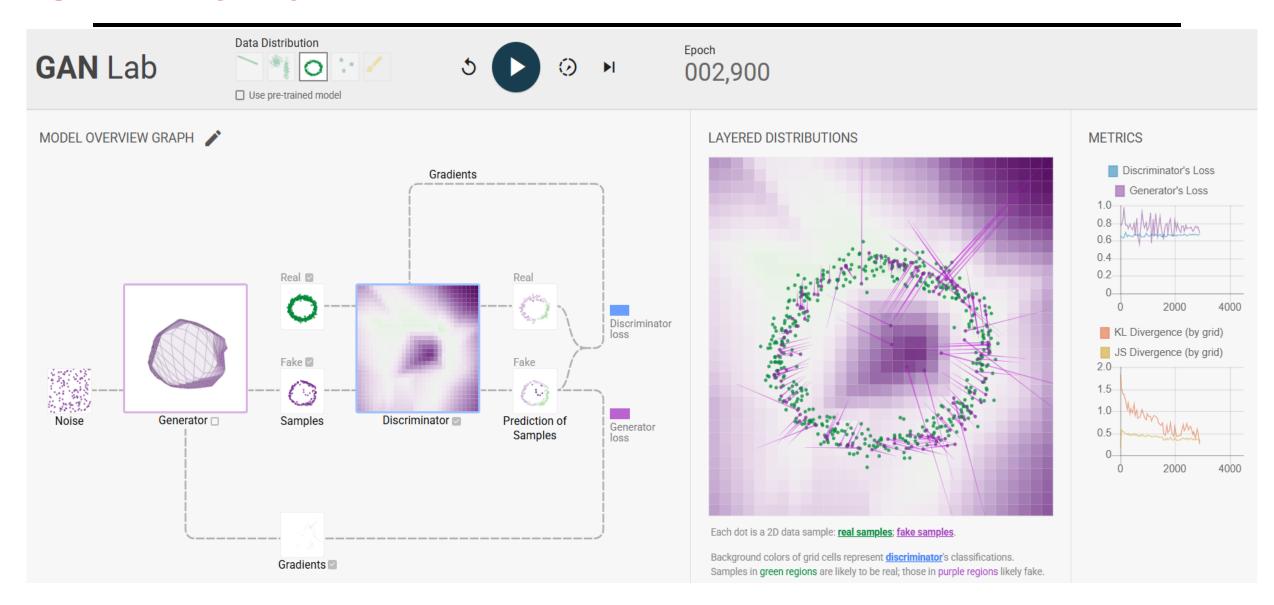


GAN: Conceptual picture

Test time – the discriminator is discarded

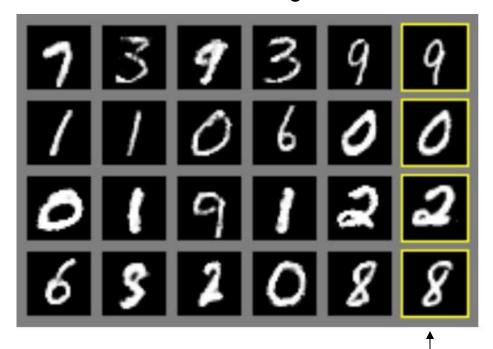


GAN Demo



Original GAN results

MNIST digits



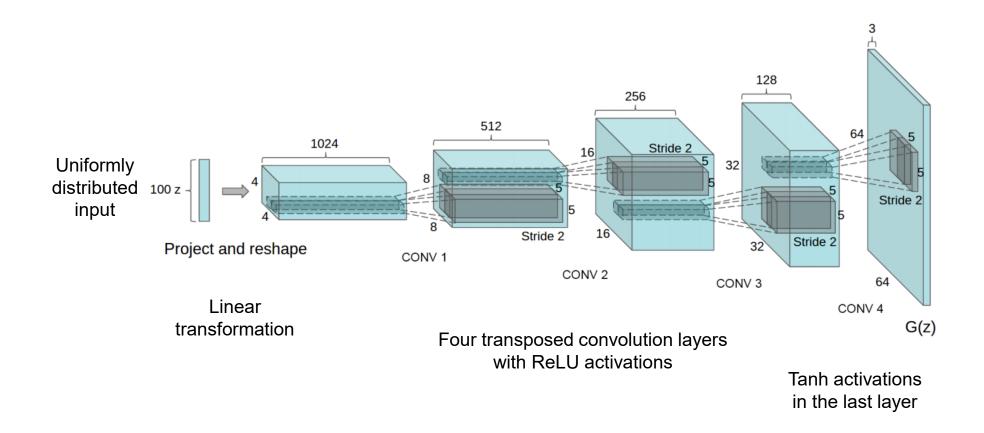
Toronto Face Dataset

Nearest real image for sample to the left

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, <u>Generative adversarial nets</u>, NIPS 2014

DCGAN

Early, influential convolutional architecture for generator



A. Radford, L. Metz, S. Chintala, <u>Unsupervised representation learning with deep convolutional generative adversarial networks</u>, ICLR 2016

DCGAN

- Early, influential convolutional architecture for generator
- Discriminator architecture:
 - Don't use pooling, only strided convolutions
 - Use Leaky ReLU activations (sparse gradients cause problems for training)
 - Use only one FC layer before the softmax output
 - Use batch normalization after most layers (in the generator also)

DCGAN results

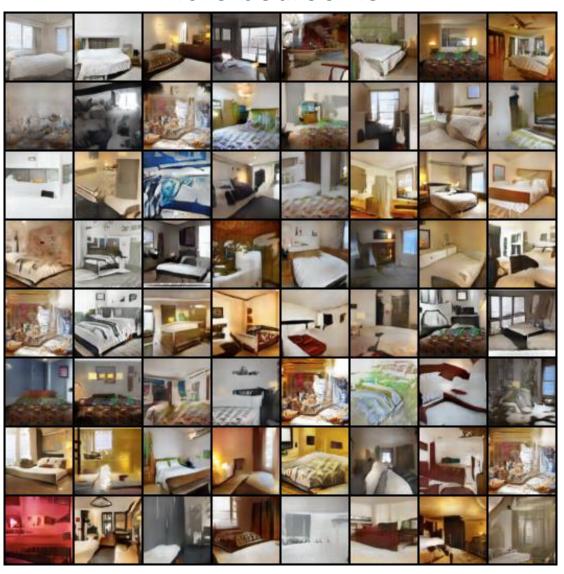
Generated bedrooms after one epoch

DCGAN results

Generated bedrooms after five epochs

DCGAN results

More bedrooms



Source: F. Fleuret

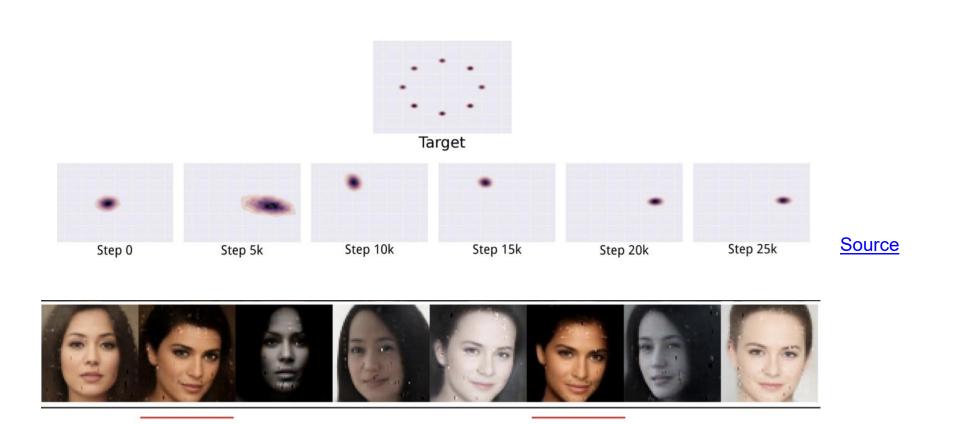
Problems with GAN training

Stability

- Parameters can oscillate or diverge, generator loss does not correlate with sample quality
- Behavior very sensitive to hyperparameter selection

Problems with GAN training

- Mode collapse
 - Generator ends up modeling only a small subset of the training data



Some popular GAN flavors

- WGAN and improved WGAN (WGAN-GP)
- LSGAN

Wasserstein GAN (WGAN)

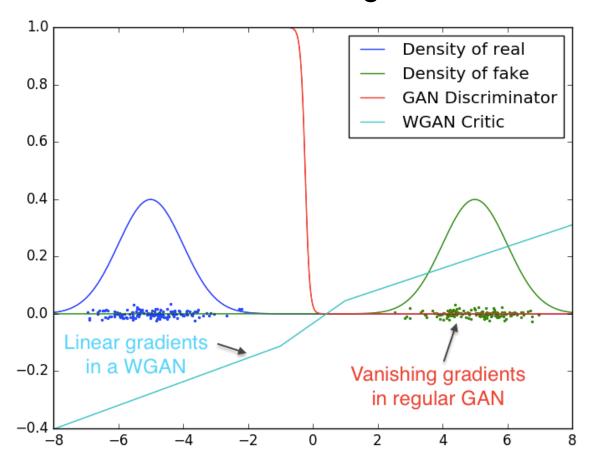
- Motivated by Wasserstein or Earth mover's distance, which is an alternative to JS divergence for comparing distributions
 - In practice, use linear activation instead of sigmoid in the discriminator and drop the logs from the objective:

$$\min_{G} \max_{D} \left[\mathbb{E}_{x \sim p_{\text{data}}} D(x) - \mathbb{E}_{z \sim p} D(G(z)) \right]$$

- Due to theoretical considerations, important to ensure smoothness of discriminator
- This paper's suggested method is clipping weights to fixed range [-c, c]

Wasserstein GAN (WGAN)

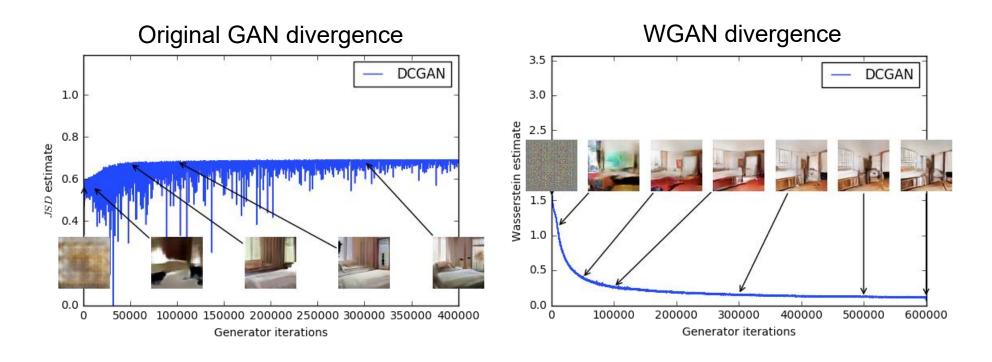
- Benefits (claimed)
 - Better gradients, more stable training



M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, ICML 2017

Wasserstein GAN (WGAN)

- Benefits (claimed)
 - Better gradients, more stable training
 - Objective function value is more meaningfully related to quality of generator output



M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, ICML 2017

Improved Wasserstein GAN (WGAN-GP)

- Weight clipping leads to problems with discriminator training
- Improved Wasserstein discriminator loss:

$$\mathbb{E}_{\tilde{x} \sim p_{\text{gen}}} D(\tilde{x}) - \mathbb{E}_{x \sim p_{\text{real}}} D(x)$$

$$+ \lambda \mathbb{E}_{\widehat{x} \sim p_{\widehat{x}}} [(\|\nabla_{\widehat{x}} D(\widehat{x})\|_2 - 1)^2]$$

Unit norm gradient penalty on points \hat{x} obtained by interpolating real and generated samples

Improved Wasserstein GAN: Results

DCGAN	LSGAN	WGAN (clipping)	WGAN-GP (ours)
Baseline (G: DCGAN	, D: DCGAN)		
G: No BN and a constant number of filters, D: DCGAN			
	entre <mark>entre de la constante d</mark>		
G: 4-layer 512-dim ReLU MLP, D: DCGAN			
No normalization in either G or D			
Gated multiplicative nonlinearities everywhere in G and D			
		N. T. C.	
anh nonlinearities everywhere in G and D			
			P.
101-layer ResNet G and D			
and and and and		1 how F	

Least Squares GAN (LSGAN)

- Use least squares cost for generator and discriminator
 - Equivalent to minimizing Pearson χ^2 divergence

$$D^* = \arg\min_{D} \left[\mathbb{E}_{x \sim p_{\text{data}}} (D(x) - 1)^2 + \mathbb{E}_{z \sim p} (D(G(z)))^2 \right]$$

Push discrim.
response on real
data close to 1

Push response on generated data close to 0

$$G^* = \operatorname{arg\,min}_G \mathbb{E}_{z \sim p} (D(G(z)) - 1)^2$$

Push response on generated data close to 1

Least Squares GAN (LSGAN)

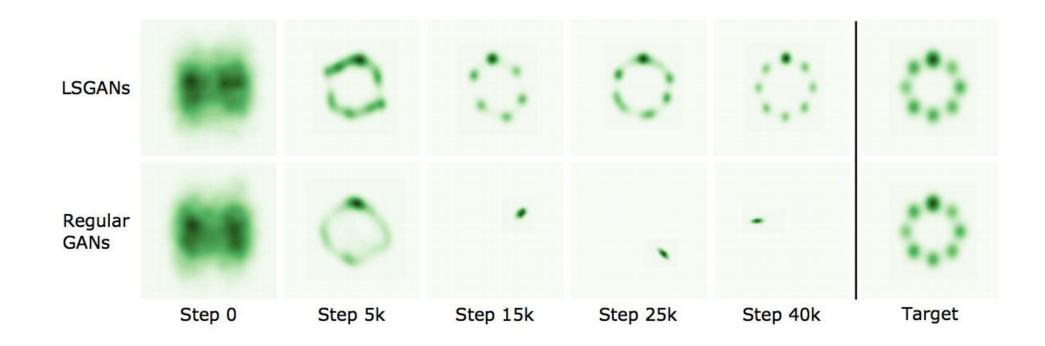
- Benefits (claimed)
 - Higher-quality images

(a) Generated images (112 \times 112) by LSGANs.

(b) Generated images (112 \times 112) by DCGANs.

Least Squares GAN (LSGAN)

- Benefits (claimed)
 - Higher-quality images
 - More stable and resistant to mode collapse



X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, <u>Least squares generative adversarial networks</u>, ICCV 2017

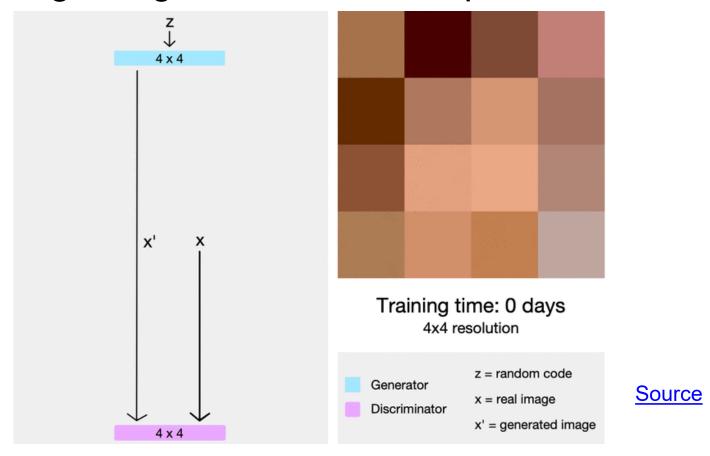
Progressive GANs

Realistic face images up to 1024 x 1024 resolution

T. Karras, T. Aila, S. Laine, J. Lehtinen. <u>Progressive Growing of GANs for Improved</u>
Quality, Stability, and Variation. ICLR 2018

Progressive GANs

 Key idea: train lower-resolution models, gradually add layers corresponding to higher-resolution outputs



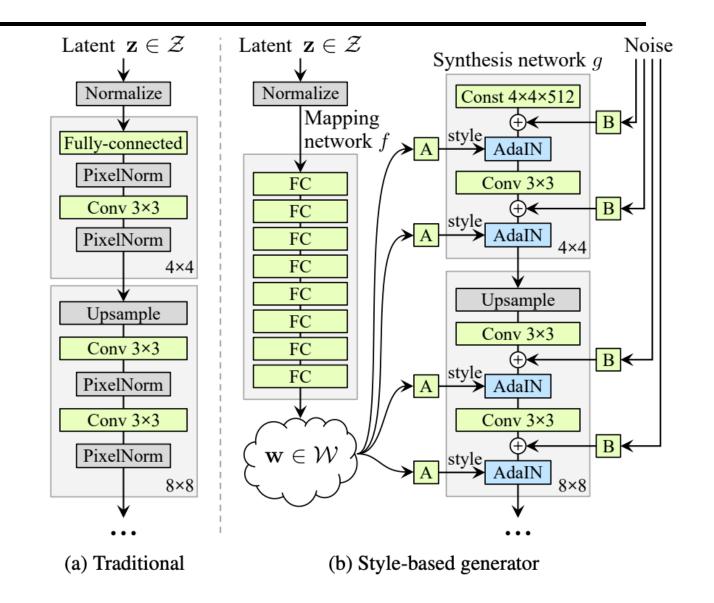
T. Karras, T. Aila, S. Laine, J. Lehtinen. <u>Progressive Growing of GANs for Improved</u> Quality, <u>Stability</u>, and <u>Variation</u>. ICLR 2018

Progressive GANs: Results

256 x 256 results for LSUN categories

StyleGAN

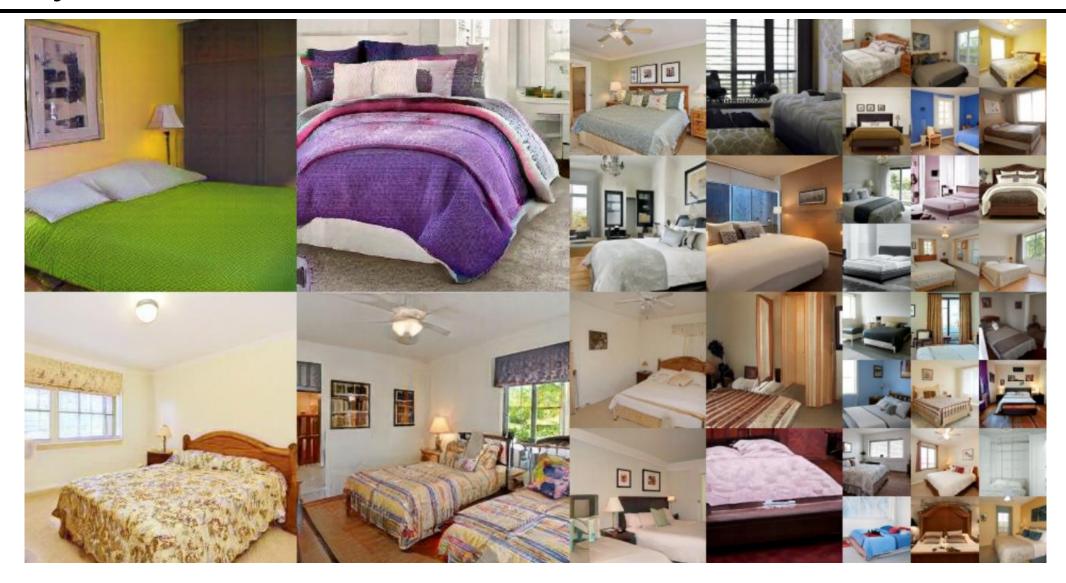
- Built on top of Progressive GAN
- Start with learned constant (instead of noise vector)
- Use a mapping network to produce a style code w using learned affine transformations A
- Use adaptive instance normalization (AdaIN): scale and bias each feature map using learned style values
- Add noise after each convolution and before nonlinearity (enables stochastic detail)



StyleGAN: Results

T. Karras, S. Laine, T. Aila. <u>A Style-Based Generator Architecture for Generative Adversarial Networks</u>. CVPR 2019

StyleGAN: Bedrooms



T. Karras, S. Laine, T. Aila. <u>A Style-Based Generator Architecture for Generative Adversarial Networks</u>. CVPR 2019

StyleGAN: Cars

T. Karras, S. Laine, T. Aila. <u>A Style-Based Generator Architecture for Generative Adversarial Networks</u>. CVPR 2019

Image-to-Image Translation

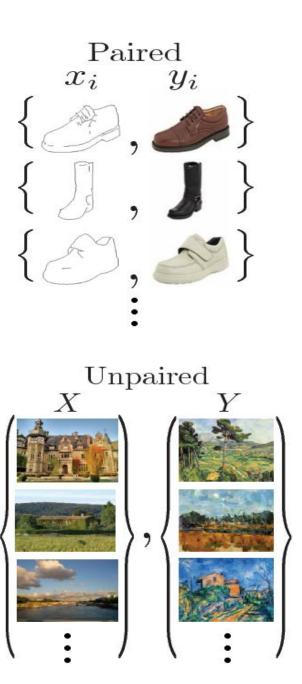


Image-to-Image Translation

Conditional GAN (cGAN)

 Cycle-Consistent Adversarial Network (CycleGAN)

 Perceptual Cyclic-Synthesized Generative Adversarial Networks (PCSGAN)

- 1. Isola, Phillip, et al. Image-to-image translation with conditional adversarial networks. CVPR 2017.
- 2. Zhu, Jun-Yan, et al. Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks. *CVPR* 2017.
- 3. Babu, Kancharagunta Kishan, and Shiv Ram Dubey. PCSGAN: Perceptual Cyclic-Synthesized Generative Adversarial Networks for Thermal and NIR to Visible Image Transformation. *Neurocomputing*, 2020.

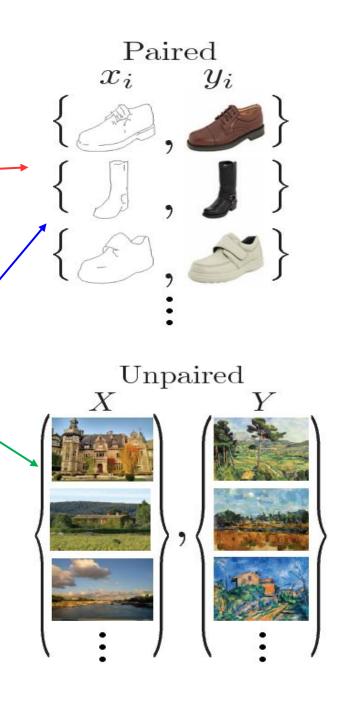


Image-to-Image Translation: GAN

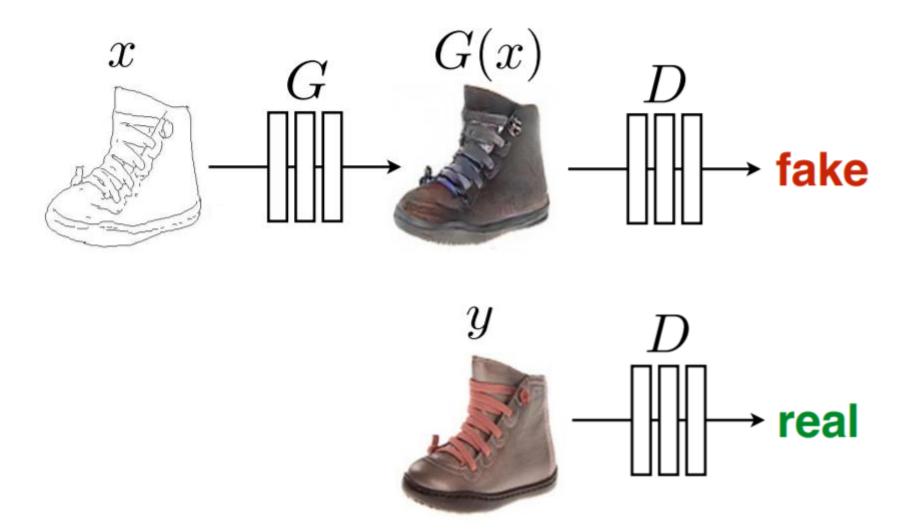


Image-to-Image Translation: Conditional GAN

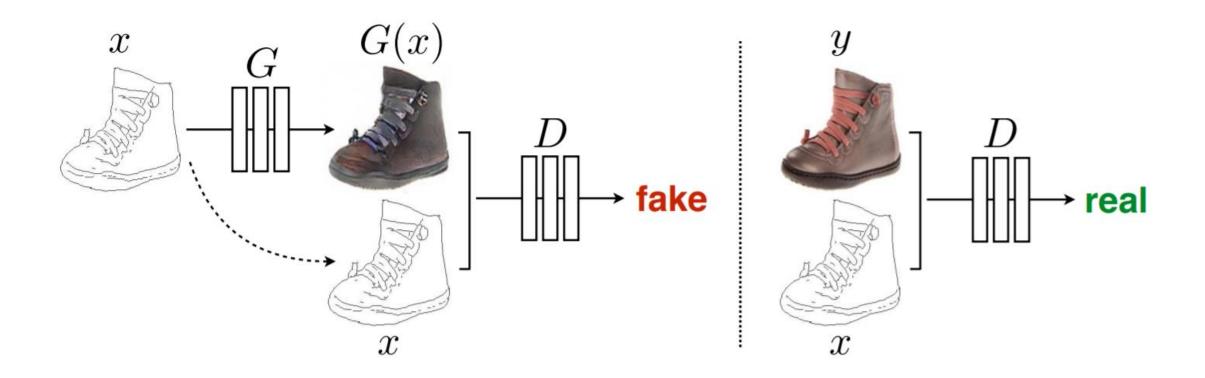


Image-to-Image Translation: Conditional GAN

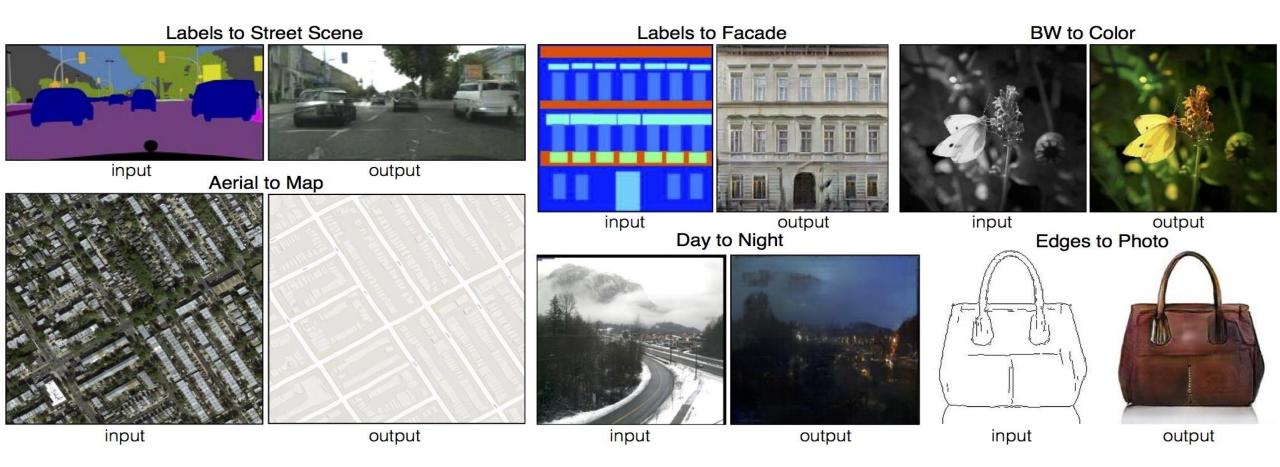


Image-to-Image Translation: Conditional GAN

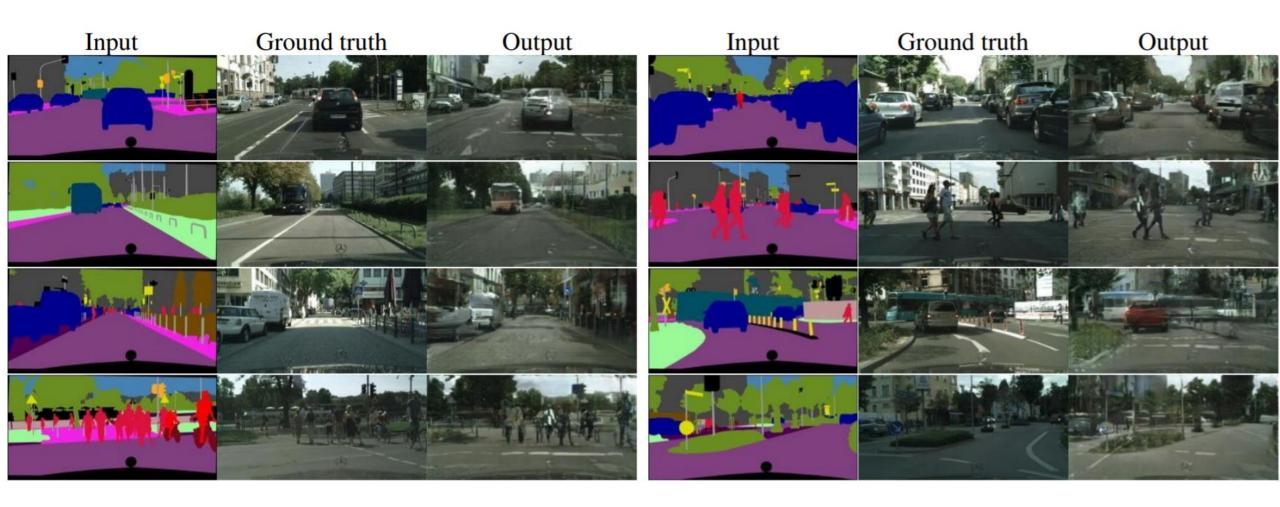


Image-to-Image Translation: Cycle GAN

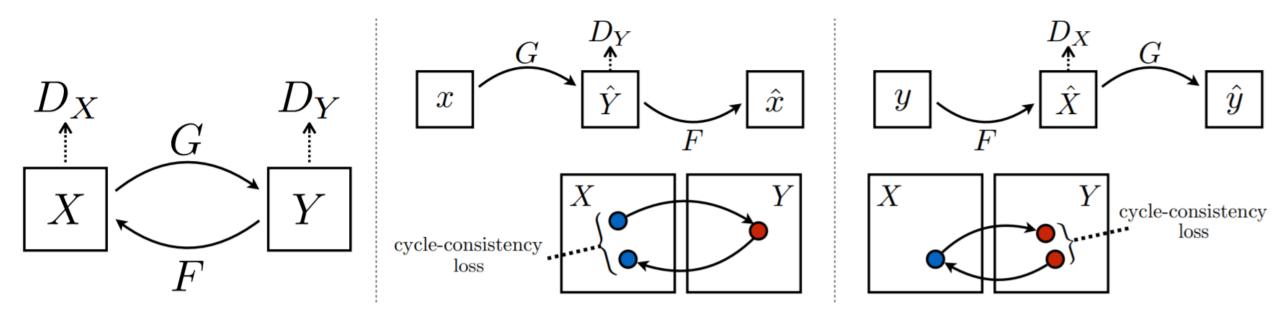


Image-to-Image Translation: Cycle GAN

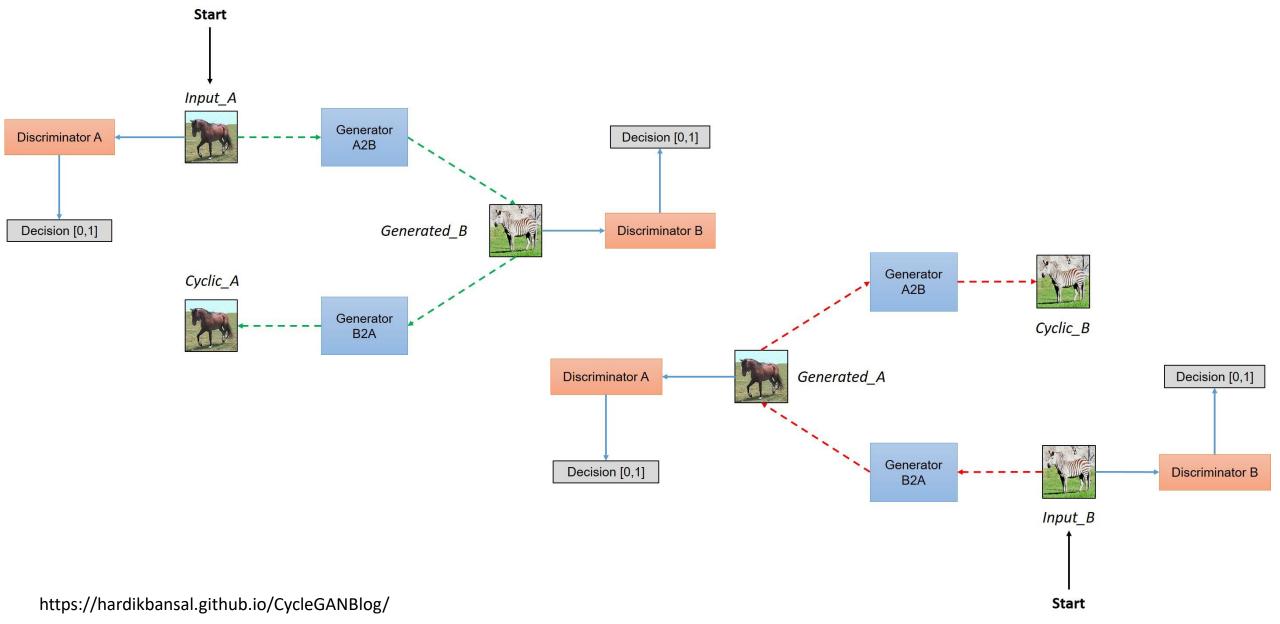
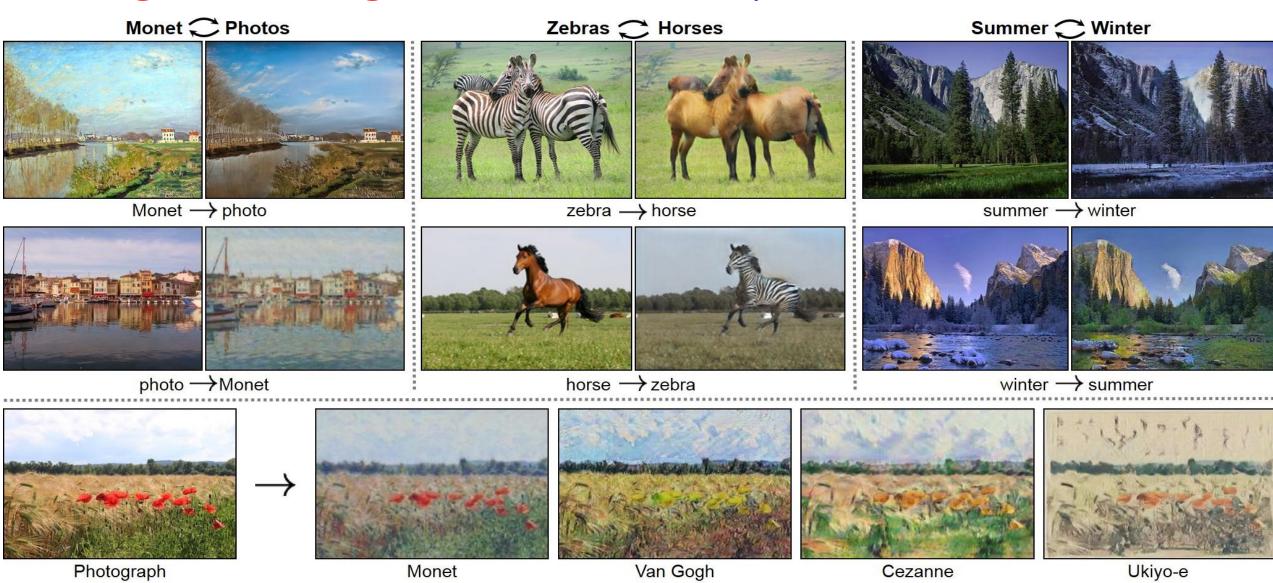


Image-to-Image Translation: Cycle GAN



Zhu, Jun-Yan, et al. Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks. CVPR 2017.

Image-to-Image Translation: PCSGAN

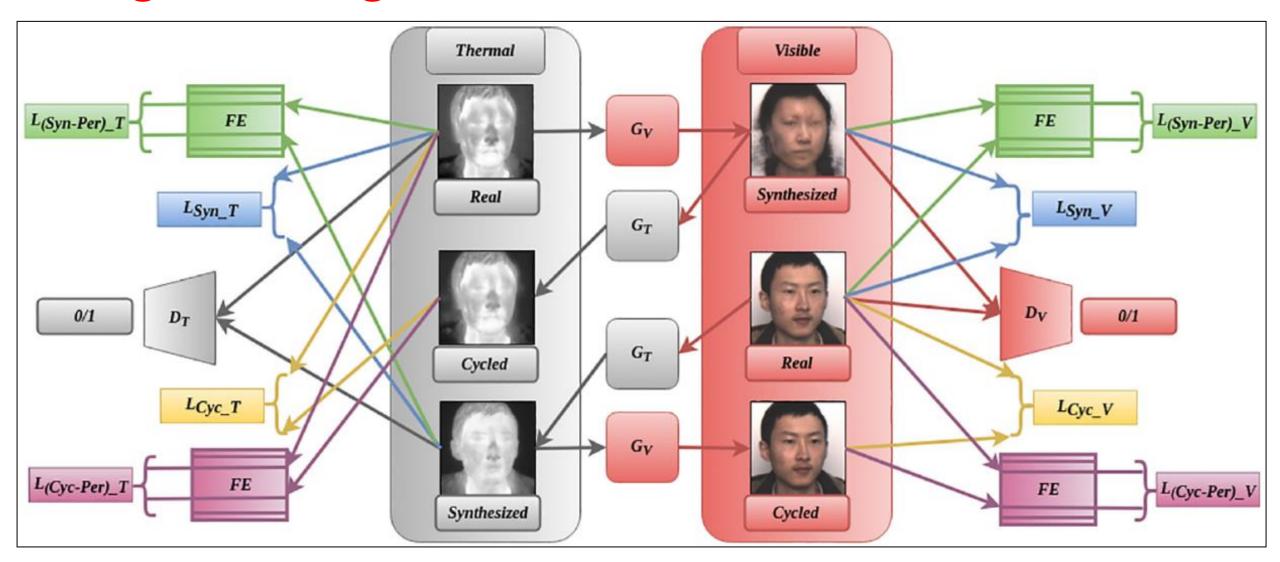


Image-to-Image Translation: PCSGAN

1st Column – Input Image

2nd Column – Pix2Pix

3rd Column – DualGAN

4th Column – CycleGAN

5th Column - PCSGAN

6th Column – Target Image

K.K. Babu and S.R. Dubey. PCSGAN: Perceptual Cyclic-Synthesized Generative Adversarial Networks for Thermal and NIR to Visible Image Transformation. *Neurocomputing*, 2020.

Image-to-Image Translation: PCSGAN

Methods	Metrics				
	SSIM	MSE	PSNR	LPIPS	MSSIM
Pix2pix	0.7555	74.6082	29.4587	0.089	0.7624
DualGAN	0.7638	75.4379	29.4201	0.099	0.7989
CycleGAN	0.7648	76.1482	29.351	0.088	0.7687
PS2GAN	0.8087	67.869	29.9676	0.064	0.8242
PAN	0.8125	69.0331	29.84	0.069	0.8281
PCSGAN (Ours)	0.8275	64.6442	30.1686	0.059	0.8411

Results comparison over the WHU-IIP face dataset.

SSIM - Structural Similarity Index Measure

MSE - Mean Square Error

PSNR - Peak Signal Noise to Ratio

LPIPS - Learned Perceptual Image Patch Similarity

MSSIM - Multi-scale SSIM

GAN: Other Applications: Generate Cartoon Characters

Generate Cartoon Characters

Example of GAN-Generated Anime Character Faces.

Taken from Towards the Automatic Anime Characters Creation with Generative Adversarial Networks, 2017.

GAN: Other Applications: Text-to-Image Translation

Text-to-Image Translation (text2image)

Text description This bird is red and brown in color, with a stubby beak

The bird is A bird with a short and medium orange bill white body stubby with vellow on its gray wings and webbed feet body

This small black bird has a short, slightly curved bill and long legs

A small bird with varying shades of brown with white under the eyes

A small yellow bird with a black crown and a short black pointed beak

This small bird has a white breast, light grey head, and black wings and tail

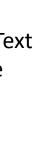
Example of Textual Descriptions and GAN-Generated Photographs of Birds Taken from StackGAN: Text to Photo-realistic Image

Synthesis with Stacked

Generative Adversarial

Networks, 2016.

64x64 **GAN-INT-CLS**



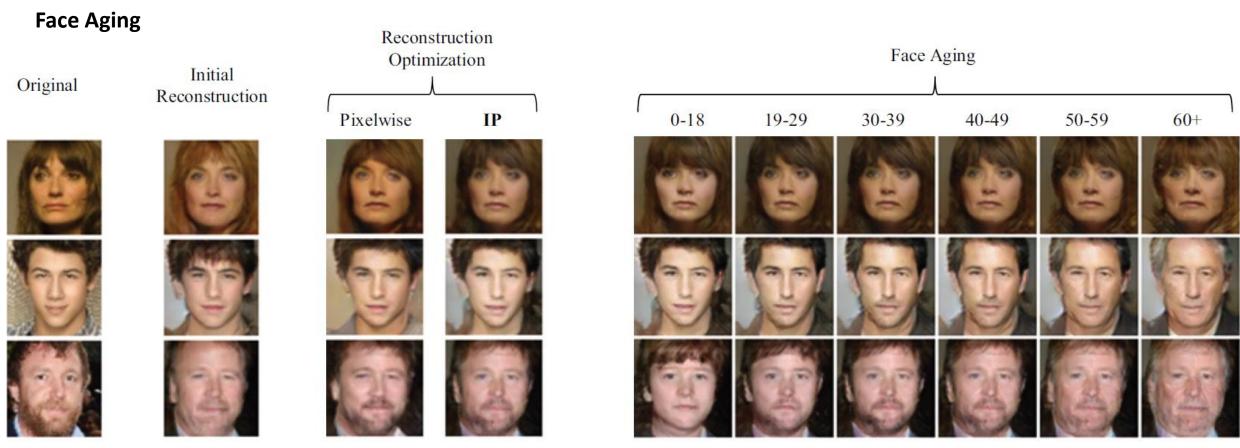
256x256 StackGAN

GAN: Other Applications: Face Frontal View Generation

Face Frontal View Generation

Example of GAN-based Face Frontal View Photo Generation Taken from Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis, 2017.

GAN: Other Applications: Face Aging



Example of Photographs of Faces Generated With a GAN With Different Apparent Ages. Taken from Face Aging With Conditional Generative Adversarial Networks, 2017.

GAN: Other Applications: De-raining

De-raining

Example of Using a GAN to Remove Rain From Photographs Taken from Image De-raining Using a Conditional Generative Adversarial Network

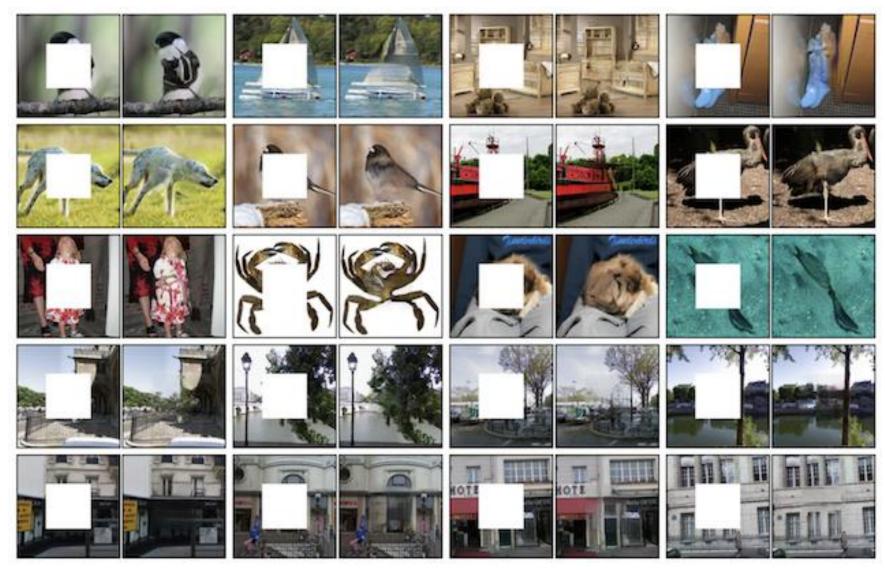
(c)

(d)

GAN: Other Applications: Photo Inpainting

Photo Inpainting

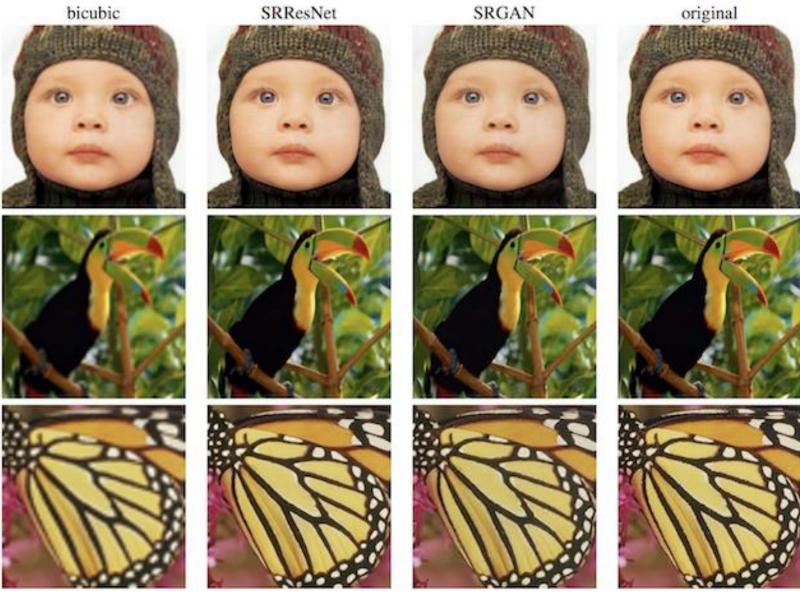
Example of GAN-Generated
Photograph Inpainting Using
Context Encoders.
Taken from Context Encoders:
Feature Learning by Inpainting
describe the use of GANs,
specifically Context Encoders, 2016.



GAN: Other Applications: Super Resolution

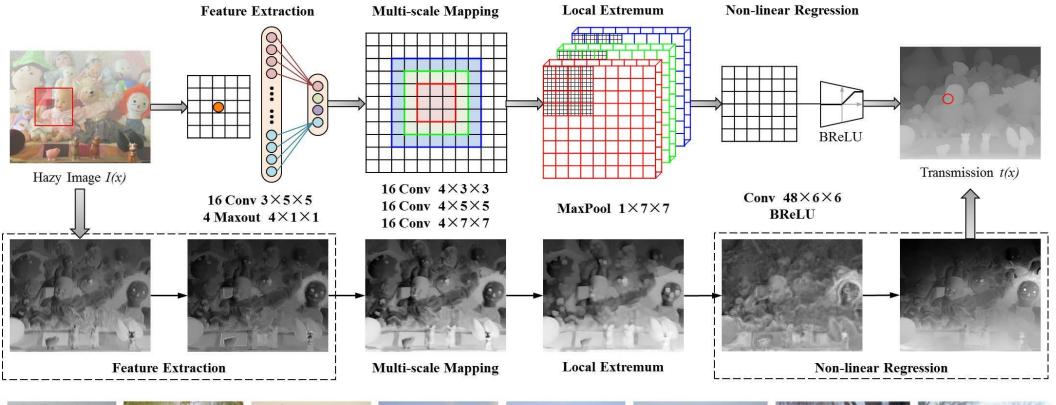
Super Resolution

Example of GAN-Generated Images With Super Resolution.
Taken from Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, 2016.



GAN: Other Applications: Dehazing

DehazeNet: An
End-to-End
System for Single
Image Haze
Removal



"The GAN Zoo"

- 3D-ED-GAN Shape Inpainting using 3D Generative Adversarial Network and Recurrent Convolutional Networks
- 3D-GAN Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling (github)
- 3D-IWGAN Improved Adversarial Systems for 3D Object Generation and Reconstruction (github)
- 3D-RecGAN 3D Object Reconstruction from a Single Depth View with Adversarial Learning (github)
- ABC-GAN ABC-GAN: Adaptive Blur and Control for improved training stability of Generative Adversarial Networks (github)
- ABC-GAN GANs for LIFE: Generative Adversarial Networks for Likelihood Free Inference
- AC-GAN Conditional Image Synthesis With Auxiliary Classifier GANs
- acGAN Face Aging With Conditional Generative Adversarial Networks
- ACtuAL ACtuAL: Actor-Critic Under Adversarial Learning
- AdaGAN AdaGAN: Boosting Generative Models
- AdvGAN Generating adversarial examples with adversarial networks
- . AE-GAN AE-GAN: adversarial eliminating with GAN
- AEGAN Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
- · AffGAN Amortised MAP Inference for Image Super-resolution
- AL-CGAN Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
- ALI Adversarially Learned Inference (github)
- · AlignGAN AlignGAN: Learning to Align Cross-Domain Images with Conditional Generative Adversarial Networks
- AM-GAN Activation Maximization Generative Adversarial Nets
- . AnoGAN Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
- APE-GAN APE-GAN: Adversarial Perturbation Elimination with GAN
- ARAE Adversarially Regularized Autoencoders for Generating Discrete Structures (github)
- ARDA Adversarial Representation Learning for Domain Adaptation
- ARIGAN ARIGAN: Synthetic Arabidopsis Plants using Generative Adversarial Network
- . ArtGAN ArtGAN: Artwork Synthesis with Conditional Categorial GANs
- AttGAN Arbitrary Facial Attribute Editing: Only Change What You Want
- AttnGAN AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
- b-GAN Generative Adversarial Nets from a Density Ratio Estimation Perspective
- Bayesian GAN Deep and Hierarchical Implicit Models

- Bayesian GAN Bayesian GAN (github)
- BCGAN Bayesian Conditional Generative Adverserial Networks
- BCGAN Bidirectional Conditional Generative Adversarial networks
- BEGAN BEGAN: Boundary Equilibrium Generative Adversarial Networks
- BGAN Binary Generative Adversarial Networks for Image Retrieval (github)
- BicycleGAN Toward Multimodal Image-to-Image Translation (github)
- · BiGAN Adversarial Feature Learning
- BS-GAN Boundary-Seeking Generative Adversarial Networks
- . C-GAN Face Aging with Contextual Generative Adversarial Nets
- C-RNN-GAN C-RNN-GAN: Continuous recurrent neural networks with adversarial training (github)
- · CA-GAN Composition-aided Sketch-realistic Portrait Generation
- CaloGAN CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks (github)
- CAN CAN: Creative Adversarial Networks, Generating Art by Learning About Styles and Deviating from Style Norms
- CapsuleGAN CapsuleGAN: Generative Adversarial Capsule Network
- CatGAN Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
- CatGAN CatGAN: Coupled Adversarial Transfer for Domain Generation
- CausalGAN CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training
- CC-GAN Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks (github)
- . CDcGAN Simultaneously Color-Depth Super-Resolution with Conditional Generative Adversarial Network
- CFG-GAN Composite Functional Gradient Learning of Generative Adversarial Models
- . CGAN Conditional Generative Adversarial Nets
- . CGAN Controllable Generative Adversarial Network
- Chekhov GAN An Online Learning Approach to Generative Adversarial Networks
- CipherGAN Unsupervised Cipher Cracking Using Discrete GANs
- CM-GAN CM-GANs: Cross-modal Generative Adversarial Networks for Common Representation Learning
- CoAtt-GAN Are You Talking to Me? Reasoned Visual Dialog Generation through Adversarial Learning
- CoGAN Coupled Generative Adversarial Networks
- ComboGAN ComboGAN: Unrestrained Scalability for Image Domain Translation (github)

https://github.com/hindupuravinash/the-gan-zoo

"The GAN Zoo"

- ConceptGAN Learning Compositional Visual Concepts with Mutual Consistency
- . Conditional cycleGAN Conditional CycleGAN for Attribute Guided Face Image Generation
- constrast-GAN Generative Semantic Manipulation with Contrasting GAN
- Context-RNN-GAN Contextual RNN-GANs for Abstract Reasoning Diagram Generation
- Coulomb GAN Coulomb GANs: Provably Optimal Nash Equilibria via Potential Fields
- Cover-GAN Generative Steganography with Kerckhoffs' Principle based on Generative Adversarial Networks
- Cramèr GAN The Cramer Distance as a Solution to Biased Wasserstein Gradients
- Cross-GAN Crossing Generative Adversarial Networks for Cross-View Person Re-identification
- crVAE-GAN Channel-Recurrent Variational Autoencoders
- CS-GAN Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
- CVAE-GAN CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
- . CycleGAN Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (github)
- D-GAN Differential Generative Adversarial Networks: Synthesizing Non-linear Facial Variations with Limited Num Training Data
- D2GAN Dual Discriminator Generative Adversarial Nets
- DA-GAN DA-GAN: Instance-level Image Translation by Deep Attention Generative Adversarial Networks (with Supplementary Materials)
- DAGAN Data Augmentation Generative Adversarial Networks
- DAN Distributional Adversarial Networks
- . DCGAN Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (githuk
- . DeblurGAN DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks (github)
- . Defense-GAN Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
- DeliGAN DeLiGAN: Generative Adversarial Networks for Diverse and Limited Data (github)
- . DF-GAN Learning Disentangling and Fusing Networks for Face Completion Under Structured Occlusions
- DiscoGAN Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
- DistanceGAN One-Sided Unsupervised Domain Mapping
- DM-GAN Dual Motion GAN for Future-Flow Embedded Video Prediction
- . DNA-GAN DNA-GAN: Learning Disentangled Representations from Multi-Attribute Images
- · dp-GAN Differentially Private Releasing via Deep Generative Model

- DPGAN Differentially Private Generative Adversarial Network
- DR-GAN Representation Learning by Rotating Your Faces
- DRAGAN How to Train Your DRAGAN (github)
- DRPAN Discriminative Region Proposal Adversarial Networks for High-Quality Image-to-Image Translation
- DSP-GAN Depth Structure Preserving Scene Image Generation
- DTN Unsupervised Cross-Domain Image Generation
- DualGAN DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
- Dualing GAN Dualing GANs
- Dynamics Transfer GAN Dynamics Transfer GAN: Generating Video by Transferring Arbitrary Temporal Dynamics from a Source Video to a Single Target Image
- EBGAN Energy-based Generative Adversarial Network
- ecGAN eCommerceGAN : A Generative Adversarial Network for E-commerce
- . ED//GAN Stabilizing Training of Generative Adversarial Networks through Regularization
- EGAN Enhanced Experience Replay Generation for Efficient Reinforcement Learning
- EnergyWGAN Energy-relaxed Wassertein GANs (EnergyWGAN): Towards More Stable and High Resolution Image Generation
- ExGAN Eye In-Painting with Exemplar Generative Adversarial Networks
- . ExposureGAN Exposure: A White-Box Photo Post-Processing Framework (github)
- ExprGAN ExprGAN: Facial Expression Editing with Controllable Expression Intensity
- f-CLSWGAN Feature Generating Networks for Zero-Shot Learning
- . f-GAN f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
- FF-GAN Towards Large-Pose Face Frontalization in the Wild
- · FIGAN Frame Interpolation with Multi-Scale Deep Loss Functions and Generative Adversarial Networks
- Fila-GAN Synthesizing Filamentary Structured Images with GANs
- · First Order GAN First Order Generative Adversarial Networks
- Fisher GAN Fisher GAN
- Flow-GAN Flow-GAN: Bridging implicit and prescribed learning in generative models
- FSEGAN Exploring Speech Enhancement with Generative Adversarial Networks for Robust Speech Recognition
- . FTGAN Hierarchical Video Generation from Orthogonal Information: Optical Flow and Texture
- FusedGAN Semi-supervised FusedGAN for Conditional Image Generation

 DP-GAN - DP-GAN: Diversity-Promoting Generative Adversarial Network for Generating Informative and Diversified Text https://github.com/hindupuravinash/the-gan-zoo

"The GAN Zoo"

- . FusionGAN Learning to Fuse Music Genres with Generative Adversarial Dual Learning
- · G2-GAN Geometry Guided Adversarial Facial Expression Synthesis
- GAGAN GAGAN: Geometry-Aware Generative Adverserial Networks
- GAMN Generative Adversarial Mapping Networks
- GAN Generative Adversarial Networks (github)
- GAN-ATV A Novel Approach to Artistic Textual Visualization via GAN
- GAN-CLS Generative Adversarial Text to Image Synthesis (github)
- · GAN-RS Towards Qualitative Advancement of Underwater Machine Vision with Generative Adversarial Networks
- GAN-sep GANs for Biological Image Synthesis (github)
- GAN-VFS Generative Adversarial Network-based Synthesis of Visible Faces from Polarimetric Thermal Faces
- GANCS Deep Generative Adversarial Networks for Compressed Sensing Automates MRI
- GANDI Guiding the search in continuous state-action spaces by learning an action sampling distribution from off-target samples
- GANG GANGs: Generative Adversarial Network Games
- GANosaic GANosaic: Mosaic Creation with Generative Texture Manifolds
- GAP Context-Aware Generative Adversarial Privacy
- . GAWWN Learning What and Where to Draw (github)
- . GC-GAN Geometry-Contrastive Generative Adversarial Network for Facial Expression Synthesis
- GeneGAN GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data (github)
- GeoGAN Generating Instance Segmentation Annotation by Geometry-guided GAN
- Geometric GAN Geometric GAN
- GLCA-GAN Global and Local Consistent Age Generative Adversarial Networks
- GMAN Generative Multi-Adversarial Networks
- . GMM-GAN Towards Understanding the Dynamics of Generative Adversarial Networks
- GoGAN Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
- . GP-GAN GP-GAN: Towards Realistic High-Resolution Image Blending (github)
- · GP-GAN GP-GAN: Gender Preserving GAN for Synthesizing Faces from Landmarks
- GPU A generative adversarial framework for positive-unlabeled classification
- GRAN Generating images with recurrent adversarial networks (github)

And Many More ..

https://github.com/hindupuravinash/the-gan-zoo

GANs: Things to Remember

Take game-theoretic approach: learn to generate from training distribution through 2-player game

Pros:

- Beautiful, state-of-the-art samples!

Cons:

- Trickier / more unstable to train
- Can't solve inference queries such as p(x), p(z|x)

Active areas of research:

- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications

Thank you