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DISCLAIMER
The content (text, image, and graphics) used in this slide are 

adopted from many sources for academic purposes. Broadly, 

the sources have been given due credit appropriately. However, 

there is a chance of missing out some original primary 

sources. The authors of this material do not claim any 

copyright of such material. 
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 

regression, object detection, 

semantic segmentation, 

image captioning, etc.

Credit: cs231n, Stanford
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 

regression, object detection, 

semantic segmentation, 

image captioning, etc.

Image Captioning

Credit: cs231n, Stanford
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Data: x
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Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying 

hidden structure of the data

Examples: Clustering, 

dimensionality reduction, feature 

learning, density estimation, etc.

(Principal Component Analysis)

Dimensionality Reduction
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Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying 

hidden structure of the data

Examples: Clustering, 

dimensionality reduction, feature 

learning, density estimation, etc.

Generative Advarsarial Networks

(Distribution learning)

Credit: cs231n, Stanford
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Later: Deep, fully-

connected

Later: ReLU CNN
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Autoencoders

Unsupervised approach for learning a lower-dimensional feature 

representation from unlabeled training data

Z usually smaller than X

(Dimensionality 

Reduction)

Q: Why dimensionality 

reduction?

A: Want features to

capture meaningful

factors of variation in

data

Credit: cs231n, Stanford

Originally: Linear +

nonlinearity (sigmoid)

Later: Deep, fully-

connected

Later: ReLU CNN



Autoencoders

How to learn this feature representation?
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Autoencoders

How to learn this feature representation?

Train such that features can be used to reconstruct 

original data “Autoencoding” - encoding itself

Input Data

Reconstructed Data

Decoder: 4-layer upconv

Encoder: 4-layer conv

Credit: cs231n, Stanford



Autoencoders

Train such that features can be used to

reconstruct original data

L2 Loss Function

Credit: cs231n, Stanford

Reconstructed Data

Decoder: 4-layer upconv

Encoder: 4-layer conv

Input Data



Autoencoders

Train such that features can be used to

reconstruct original data

L2 Loss Function

Credit: cs231n, Stanford

Reconstructed Data

Decoder: 4-layer upconv

Encoder: 4-layer conv

Input Data

Doesn’t use labels!



Autoencoders

Input Data

Encoder: 4-layer conv

Decoder: 4-layer 

upconvAfter training,

throw away decoder

Credit: cs231n, Stanford



Autoencoders

Credit: cs231n, Stanford



Autoencoders

Loss Function

(Softmax, etc.)

Encoder can be used to 

initialize a supervised model

Credit: cs231n, Stanford



Autoencoders

Loss Function

(Softmax, etc.)

Encoder can be used to 

initialize a supervised model

Fine-tune

encoder

jointly with

classifier

Train for final task

(sometimes with

small data)

Credit: cs231n, Stanford



Generative tasks

• Generation (from scratch): learn to sample from the 

distribution represented by the training set

• Unsupervised learning task



Generative tasks

• Generation conditioned on class label

Figure source

https://arxiv.org/pdf/1805.08318.pdf


Generative tasks

• Generation conditioned on image (image-to-image 

translation)

P. Isola, J.-Y. Zhu, T. Zhou, A. Efros, Image-to-Image Translation with Conditional Adversarial 

Networks, CVPR 2017

https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/


Designing a network for generative tasks

1. We need an architecture that can generate an image

• Recall upsampling architectures for dense prediction

Random 

seed or 

latent code

Unconditional 

generation
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Designing a network for generative tasks

1. We need an architecture that can generate an image

• Recall upsampling architectures for dense prediction

Image-to-image translation

• Sample from a simple distribution, e.g. 

random noise. 

• Learn transformation to training distribution.

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014 Credit: cs231n, Stanford

A neural network can be 

used to represent 

this complex 

transformation?



Designing a network for generative tasks

1. We need an architecture that can generate an image

• Recall upsampling architectures for dense prediction

2. We need to design the right loss function



Learning to sample

Training data 𝑥 ~ 𝑝data Generated samples 𝑥 ~ 𝑝model 

We want to learn 𝑝model that matches 𝑝data 

Adapted from Stanford CS231n

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture12.pdf


Generative adversarial networks

• Train two networks with opposing objectives:

• Generator: learns to generate samples

• Discriminator: learns to distinguish between generated and real 

samples

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, 

A. Courville, Y. Bengio, Generative adversarial nets, NIPS 2014

𝐺
Random noise 𝑧

𝐷
“Fake”

𝐷
“Real”

Figure adapted 

from F. Fleuret

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://fleuret.org/ee559/ee559-slides-10-1-GAN.pdf


Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014 Fake and real images copyright Emily Denton et al. 2015. Credit: cs231n, Stanford

Generative adversarial networks



Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014 Fake and real images copyright Emily Denton et al. 2015. Credit: cs231n, Stanford

Generative adversarial networks



GAN objective

• The discriminator 𝐷(𝑥) should output the probability that the 

sample 𝑥 is real 

• That is, we want 𝐷(𝑥) to be close to 1 for real data and close to 0 for 

fake

• Expected conditional log likelihood for real and generated 

data:

             𝔼𝑥~𝑝data
log 𝐷(𝑥)

          = 𝔼𝑥~𝑝data
log 𝐷(𝑥)  +  𝔼𝑧~𝑝log(1 − 𝐷 𝐺(𝑧) )

We seed the generator with noise 𝑧 

drawn from a simple distribution 𝑝 

(Gaussian or uniform)

+ 𝔼𝑥~𝑝gen
log 1 − 𝐷 𝑥



GAN objective

𝑉 𝐺, 𝐷 = 𝔼𝑥~𝑝data
log 𝐷(𝑥) + 𝔼𝑧~𝑝log(1 − 𝐷 𝐺(𝑧) )

• The discriminator wants to correctly distinguish real and fake 

samples:

𝐷∗ = arg max𝐷 𝑉(𝐺, 𝐷)

• The generator wants to fool the discriminator:

𝐺∗ = arg min𝐺  𝑉(𝐺, 𝐷)

• Train the generator and discriminator jointly in a minimax 

game



GAN objective: Theoretical properties

𝑉 𝐺, 𝐷 = 𝔼𝑥~𝑝data
log 𝐷(𝑥) + 𝔼𝑧~𝑝log(1 − 𝐷 𝐺(𝑧) )

• Assuming unlimited capacity for generator and discriminator 

and unlimited training data:

• The objective min𝐺  max𝐷𝑉 𝐺, 𝐷  is equivalent to Jensen-Shannon 

divergence between 𝑝data and 𝑝gen and global optimum (Nash 

equilibrium) is given by 𝑝data = 𝑝gen



GAN objective: Theoretical properties

𝑉 𝐺, 𝐷 = 𝔼𝑥~𝑝data
log 𝐷(𝑥) + 𝔼𝑧~𝑝log(1 − 𝐷 𝐺(𝑧) )

• Assuming unlimited capacity for generator and discriminator 

and unlimited training data:

• The objective min𝐺  max𝐷𝑉 𝐺, 𝐷  is equivalent to Jensen-Shannon 

divergence between 𝑝data and 𝑝gen and global optimum (Nash 

equilibrium) is given by 𝑝data = 𝑝gen

• If at each step, 𝐷 is allowed to reach its optimum given 𝐺, and 𝐺 is 

updated to decrease 𝑉 𝐺, 𝐷 , then 𝑝gen will eventually converge to 

𝑝data



GAN training

𝑉 𝐺, 𝐷 = 𝔼𝑥~𝑝data
log 𝐷(𝑥) + 𝔼𝑧~𝑝log(1 − 𝐷 𝐺(𝑧) )

• Alternate between

• Gradient ascent on discriminator:

𝐷∗ = arg max𝐷 𝑉 𝐺, 𝐷

• Gradient descent on generator (minimize log-probability of 

discriminator being right):

𝐺∗ = arg min𝐺  𝑉 𝐺, 𝐷
= arg min𝐺  𝔼𝑧~𝑝log(1 − 𝐷 𝐺(𝑧) )

• In practice, do gradient ascent on generator (maximize log-probability 

of discriminator being wrong):

𝐺∗ = arg max𝐺  𝔼𝑧~𝑝log(𝐷 𝐺(𝑧) )



Non-saturating GAN loss (NSGAN)

min𝑤𝐺
𝔼𝑧~𝑝 log(1 − 𝐷 𝐺(𝑧) )    vs.    max𝑤𝐺

𝔼𝑧~𝑝 log(𝐷 𝐺(𝑧) )

Minimize log-probability of 

discriminator being right

Maximize log-probability of 

discriminator being wrong



Non-saturating GAN loss (NSGAN)

min𝑤𝐺
𝔼𝑧~𝑝 log(1 − 𝐷 𝐺(𝑧) )    vs.    max𝑤𝐺

𝔼𝑧~𝑝 log(𝐷 𝐺(𝑧) )

log(1 − 𝐷(𝐺(𝑧))

−log(𝐷(𝐺(𝑧))

Want to learn 

from confidently 

rejected sample 

but gradients 

here are small

These samples 

already fool the 

discriminator so we 

don’t need large 

gradients here

Small gradients for 

high-quality samples

Large gradients for 

low-quality samples

Figure source

Low discriminator score 

(low-quality samples)

High discriminator score 

(high-quality samples)

https://cs.uwaterloo.ca/~mli/Deep-Learning-2017-Lecture7GAN.ppt


NSGAN training algorithm

• Update discriminator:

• Repeat for 𝑘 steps:

• Sample mini-batch of noise samples 𝑧1, … , 𝑧𝑚 and 

mini-batch of real samples 𝑥1, … , 𝑥𝑚 

• Update parameters of 𝐷 by stochastic gradient ascent on
1

𝑚
෍

𝑚

log 𝐷(𝑥𝑚) + log(1 − 𝐷 𝐺(𝑧𝑚) )

• Update generator:

• Sample mini-batch of noise samples 𝑧1, … , 𝑧𝑚

• Update parameters of 𝐺 by stochastic gradient ascent on
1

𝑚
෍

𝑚

log 𝐷 𝐺(𝑧𝑚)

• Repeat until happy with results



NSGAN training algorithm

• Update discriminator:

• Repeat for 𝑘 steps:

• Sample mini-batch of noise samples 𝑧1, … , 𝑧𝑚 and 

mini-batch of real samples 𝑥1, … , 𝑥𝑚 

• Update parameters of 𝐷 by stochastic gradient ascent on
1

𝑚
෍

𝑚

log 𝐷(𝑥𝑚) + log(1 − 𝐷 𝐺(𝑧𝑚) )

• Update generator:

• Sample mini-batch of noise samples 𝑧1, … , 𝑧𝑚

• Update parameters of 𝐺 by stochastic gradient ascent on
1

𝑚
෍

𝑚

log 𝐷 𝐺(𝑧𝑚)

• Repeat until happy with results

Some find k=1

more stable,

others use k > 1,

no best rule.

Recent work (e.g.

Wasserstein GAN)

alleviates this

problem, better

stability!



GAN: Conceptual picture

• Update discriminator: push 𝐷(𝑥data) close to 1 and 𝐷 𝐺(𝑧)  

close to 0

• The generator is a “black box” to the discriminator

𝑧 𝐺 𝐷
𝐺(𝑧)

𝐷 𝐺(𝑧)

𝑥data

𝐷(𝑥data)



GAN: Conceptual picture

• Update generator: increase 𝐷 𝐺(𝑧)

• Requires back-propagating through the composed generator-

discriminator network (i.e., the discriminator cannot be a black box)

• The generator is exposed to real data only via the output of the 

discriminator (and its gradients)

𝑧 𝐺 𝐷 𝐷 𝐺(𝑧)
𝐺(𝑧)



GAN: Conceptual picture

• Test time – the discriminator is discarded

𝑧 𝐺 𝐺(𝑧)



https://poloclub.github.io/ganlab/

GAN Demo

https://poloclub.github.io/ganlab/


Original GAN results

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, 

A. Courville, Y. Bengio, Generative adversarial nets, NIPS 2014

Nearest real image for 

sample to the left

MNIST digits Toronto Face Dataset

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf


• Early, influential convolutional architecture for generator

DCGAN

A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep 

convolutional generative adversarial networks, ICLR 2016

Four transposed convolution layers 

with ReLU activations
Tanh activations 

in the last layer

Uniformly 

distributed 

input

Linear 

transformation

https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf


• Early, influential convolutional architecture for generator

• Discriminator architecture:

• Don’t use pooling, only strided convolutions

• Use Leaky ReLU activations (sparse gradients cause problems for 

training)

• Use only one FC layer before the softmax output

• Use batch normalization after most layers (in the generator also)

DCGAN

A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep 

convolutional generative adversarial networks, ICLR 2016

https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf


DCGAN results

Generated bedrooms after one epoch



DCGAN results

Generated bedrooms after five epochs



DCGAN results

More bedrooms

Source: F. Fleuret



Problems with GAN training

• Stability

• Parameters can oscillate or diverge, generator loss does not 

correlate with sample quality

• Behavior very sensitive to hyperparameter selection



Problems with GAN training

• Mode collapse

• Generator ends up modeling only a small subset of the training data

Source

Source

https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://arxiv.org/pdf/1701.00160.pdf


Some popular GAN flavors

• WGAN and improved WGAN (WGAN-GP)

• LSGAN



Wasserstein GAN (WGAN)

• Motivated by Wasserstein or Earth mover’s distance, which is 

an alternative to JS divergence for comparing distributions

• In practice, use linear activation instead of sigmoid in the 

discriminator and drop the logs from the objective:

min𝐺  max𝐷 𝔼𝑥~𝑝data
𝐷 𝑥 − 𝔼𝑧~𝑝𝐷 𝐺(𝑧)

• Due to theoretical considerations, important to ensure smoothness of 

discriminator 

• This paper’s suggested method is clipping weights to fixed range 

[−𝑐, 𝑐]

M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, ICML 2017

https://arxiv.org/pdf/1701.07875.pdf


Wasserstein GAN (WGAN)

• Benefits (claimed)

• Better gradients, more stable training

M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, ICML 2017

https://arxiv.org/pdf/1701.07875.pdf


Wasserstein GAN (WGAN)

• Benefits (claimed)

• Better gradients, more stable training

• Objective function value is more meaningfully related to quality of 

generator output

Original GAN divergence WGAN divergence

M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, ICML 2017

https://arxiv.org/pdf/1701.07875.pdf


Improved Wasserstein GAN (WGAN-GP)

• Weight clipping leads to problems with discriminator training

• Improved Wasserstein discriminator loss:

𝔼 ෤𝑥~𝑝gen
𝐷 ෤𝑥 − 𝔼𝑥~𝑝real

𝐷 𝑥

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of Wasserstein GANs, NIPS 2017

Unit norm gradient penalty on 

points ො𝑥 obtained by interpolating 

real and generated samples

+ 𝜆 𝔼 ො𝑥~𝑝ෝ𝑥
𝛻ො𝑥𝐷( ො𝑥) 2 − 1 2

https://arxiv.org/pdf/1704.00028.pdf


Improved Wasserstein GAN: Results

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of Wasserstein GANs, NIPS 2017

https://arxiv.org/pdf/1704.00028.pdf


Least Squares GAN (LSGAN)

• Use least squares cost for generator and discriminator

• Equivalent to minimizing Pearson 𝜒2 divergence

𝐷∗ = arg min𝐷 𝔼𝑥~𝑝data
𝐷 𝑥 − 1 2 + 𝔼𝑧~𝑝(𝐷 𝐺(𝑧) )2

𝐺∗ =  arg min𝐺  𝔼𝑧~𝑝(𝐷 𝐺 𝑧 − 1)2

Push discrim. 

response on real 

data close to 1

Push response on 

generated data close to 0

Push response on 

generated data close to 1

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, Least squares generative adversarial networks, 

ICCV 2017

http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf


Least Squares GAN (LSGAN)

• Benefits (claimed)

• Higher-quality images

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, Least squares generative adversarial networks, 

ICCV 2017

http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf


Least Squares GAN (LSGAN)

• Benefits (claimed)

• Higher-quality images 

• More stable and resistant to mode collapse

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, Least squares generative adversarial networks, 

ICCV 2017

http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf


Progressive GANs

T. Karras, T. Aila, S. Laine, J. Lehtinen. Progressive Growing of GANs for Improved 

Quality, Stability, and Variation. ICLR 2018

Realistic face images up to 1024 x 1024 resolution

https://openreview.net/pdf?id=Hk99zCeAb
https://openreview.net/pdf?id=Hk99zCeAb


Progressive GANs

• Key idea: train lower-resolution models, gradually add layers 

corresponding to higher-resolution outputs

Source

T. Karras, T. Aila, S. Laine, J. Lehtinen. Progressive Growing of GANs for Improved 

Quality, Stability, and Variation. ICLR 2018

https://cdn-images-1.medium.com/max/1600/1*tUhgr3m54Qc80GU2BkaOiQ.gif
https://openreview.net/pdf?id=Hk99zCeAb
https://openreview.net/pdf?id=Hk99zCeAb


Progressive GANs: Results

256 x 256 results for LSUN categories



StyleGAN

T. Karras, S. Laine, T. Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019

• Built on top of Progressive GAN

• Start with learned constant 

(instead of noise vector)

• Use a mapping network to 

produce a style code 𝑤 using 

learned affine transformations 𝐴

• Use adaptive instance 

normalization (AdaIN): scale and 

bias each feature map using 

learned style values

• Add noise after each convolution 

and before nonlinearity (enables 

stochastic detail)

https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf


StyleGAN: Results

T. Karras, S. Laine, T. Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019

https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf


StyleGAN: Bedrooms

T. Karras, S. Laine, T. Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019

https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf


StyleGAN: Cars

T. Karras, S. Laine, T. Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019

https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf
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Image-to-Image Translation



• Conditional GAN (cGAN)

• Cycle-Consistent Adversarial Network 
(CycleGAN)

• Perceptual Cyclic-Synthesized Generative 
Adversarial Networks (PCSGAN)

1. Isola, Phillip, et al. Image-to-image translation with conditional adversarial networks. CVPR 2017.
2. Zhu, Jun-Yan, et al. Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial 

Networks. CVPR 2017.
3. Babu, Kancharagunta Kishan, and Shiv Ram Dubey. PCSGAN: Perceptual Cyclic-Synthesized Generative 

Adversarial Networks for Thermal and NIR to Visible Image Transformation. Neurocomputing, 2020.

Image-to-Image Translation



Image-to-Image Translation: GAN



Image-to-Image Translation: Conditional GAN

Isola, Phillip, et al. Image-to-image translation with conditional adversarial networks. CVPR 2017.



Image-to-Image Translation: Conditional GAN

Isola, Phillip, et al. Image-to-image translation with conditional adversarial networks. CVPR 2017.



Image-to-Image Translation: Conditional GAN

Isola, Phillip, et al. Image-to-image translation with conditional adversarial networks. CVPR 2017.



Image-to-Image Translation: Cycle GAN

Zhu, Jun-Yan, et al. Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks. CVPR 2017.



Image-to-Image Translation: Cycle GAN

https://hardikbansal.github.io/CycleGANBlog/



Image-to-Image Translation: Cycle GAN

Zhu, Jun-Yan, et al. Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks. CVPR 2017.



Image-to-Image Translation: PCSGAN

K.K. Babu and S.R. Dubey. PCSGAN: Perceptual Cyclic-Synthesized Generative Adversarial Networks for Thermal and NIR to 
Visible Image Transformation. Neurocomputing, 2020.



Image-to-Image Translation: PCSGAN

K.K. Babu and S.R. Dubey. PCSGAN: Perceptual Cyclic-Synthesized Generative Adversarial Networks for Thermal and NIR to 
Visible Image Transformation. Neurocomputing, 2020.

1st Column – Input Image

2nd Column – Pix2Pix

3rd Column – DualGAN

4th Column – CycleGAN

5th Column – PCSGAN

6th Column – Target Image



Image-to-Image Translation: PCSGAN

K.K. Babu and S.R. Dubey. PCSGAN: Perceptual Cyclic-Synthesized Generative Adversarial Networks for Thermal and NIR to 
Visible Image Transformation. Neurocomputing, 2020.

Results comparison over the WHU-IIP face dataset.

SSIM - Structural Similarity Index Measure 

MSE - Mean Square Error 

PSNR - Peak Signal Noise to Ratio 

LPIPS - Learned Perceptual Image Patch Similarity 

MSSIM - Multi-scale SSIM



GAN: Other Applications: Generate Cartoon Characters

Generate Cartoon Characters

Example of GAN-Generated Anime 
Character Faces.
Taken from Towards the Automatic 
Anime Characters Creation with 
Generative Adversarial Networks, 
2017.

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/



GAN: Other Applications: Text-to-Image Translation

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

Text-to-Image Translation 
(text2image)

Example of Textual 
Descriptions and GAN-
Generated Photographs of 
Birds
Taken from StackGAN: Text 
to Photo-realistic Image 
Synthesis with Stacked 
Generative Adversarial 
Networks, 2016.



GAN: Other Applications: Face Frontal View Generation

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

Face Frontal View Generation

Example of GAN-based Face Frontal View Photo Generation
Taken from Beyond Face Rotation: Global and Local Perception 
GAN for Photorealistic and Identity Preserving Frontal View 
Synthesis, 2017.



GAN: Other Applications: Face Aging

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

Face Aging

Example of Photographs of Faces Generated With a GAN With Different Apparent Ages.
Taken from Face Aging With Conditional Generative Adversarial Networks, 2017.



GAN: Other Applications: De-raining

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

De-raining

Example of Using a GAN to Remove 
Rain From Photographs
Taken from Image De-raining Using 
a Conditional Generative 
Adversarial Network



GAN: Other Applications: Photo Inpainting

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

Photo Inpainting

Example of GAN-Generated 
Photograph Inpainting Using 
Context Encoders.
Taken from Context Encoders: 
Feature Learning by Inpainting 
describe the use of GANs, 
specifically Context Encoders, 2016.



GAN: Other Applications: Super Resolution

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

Super Resolution

Example of GAN-Generated Images 
With Super Resolution. 
Taken from Photo-Realistic Single 
Image Super-Resolution Using a 
Generative Adversarial Network, 
2016.



GAN: Other Applications: Dehazing

DehazeNet: An 
End-to-End 

System for Single 
Image Haze 

Removal

https://caibolun.github.io/DehazeNet/



https://github.com/hindupuravinash/the-gan-zoo

“The GAN Zoo”



“The GAN Zoo”

https://github.com/hindupuravinash/the-gan-zoo



“The GAN Zoo”

https://github.com/hindupuravinash/the-gan-zoo

And Many More …………….......



GANs: Things to Remember
Take game-theoretic approach: learn to generate from training distribution 
through 2-player game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can’t solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many 
others)
- Conditional GANs, GANs for all kinds of applications



Thank you 
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