
Generative Adversarial
Networks

Indian Institute of Information Technology, Allahabad

By

Dr. Satish Kumar Singh & Dr. Shiv Ram Dubey
Computer Vision and Biometrics Lab
Department of Information Technology
Indian Institute of Information Technology, Allahabad

TEAM
Computer Vision and Biometrics Lab (CVBL)

Department of Information Technology

Indian Institute of Information Technology Allahabad

Course Instructors

Dr. Satish Kumar Singh, Associate Professor, IIIT Allahabad (Email: sk.singh@iiita.ac.in)

Dr. Shiv Ram Dubey, Assistant Professor, IIIT Allahabad (Email: srdubey@iiita.ac.in)

DISCLAIMER
The content (text, image, and graphics) used in this slide are

adopted from many sources for academic purposes. Broadly,

the sources have been given due credit appropriately. However,

there is a chance of missing out some original primary

sources. The authors of this material do not claim any

copyright of such material.

Outline

• Unsupervised Learning

• Generative tasks

• Generative Adversarial Networks

• GAN Objective Function

• GAN Variants

• Image-to-Image Translation

• GANs: Recent Trends

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,

regression, object detection,

semantic segmentation,

image captioning, etc.

Credit: cs231n, Stanford

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,

regression, object detection,

semantic segmentation,

image captioning, etc.

Cat

Classification

Credit: cs231n, Stanford

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,

regression, object detection,

semantic segmentation,

image captioning, etc.

Object Detection

Credit: cs231n, Stanford

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,

regression, object detection,

semantic segmentation,

image captioning, etc.

Semantic Segmentation

Credit: cs231n, Stanford

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,

regression, object detection,

semantic segmentation,

image captioning, etc.

Image Captioning

Credit: cs231n, Stanford

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying

hidden structure of the data

Examples: Clustering,

dimensionality reduction, feature

learning, density estimation, etc.

Credit: cs231n, Stanford

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying

hidden structure of the data

Examples: Clustering,

dimensionality reduction, feature

learning, density estimation, etc.

K-Means Clustering

Credit: cs231n, Stanford

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying

hidden structure of the data

Examples: Clustering,

dimensionality reduction, feature

learning, density estimation, etc.

(Principal Component Analysis)

Dimensionality Reduction

Credit: cs231n, Stanford

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying

hidden structure of the data

Examples: Clustering,

dimensionality reduction, feature

learning, density estimation, etc.

Generative Advarsarial Networks

(Distribution learning)

Credit: cs231n, Stanford

Autoencoders

Unsupervised approach for learning a lower-dimensional feature

representation from unlabeled training data

Credit: cs231n, Stanford

Autoencoders

Unsupervised approach for learning a lower-dimensional feature

representation from unlabeled training data

Originally: Linear +

nonlinearity (sigmoid)

Later: Deep, fully-

connected

Later: ReLU CNN

Credit: cs231n, Stanford

Autoencoders

Unsupervised approach for learning a lower-dimensional feature

representation from unlabeled training data

Z usually smaller than X

(Dimensionality

Reduction)

Q: Why dimensionality

reduction?

Credit: cs231n, Stanford

Originally: Linear +

nonlinearity (sigmoid)

Later: Deep, fully-

connected

Later: ReLU CNN

Autoencoders

Unsupervised approach for learning a lower-dimensional feature

representation from unlabeled training data

Z usually smaller than X

(Dimensionality

Reduction)

Q: Why dimensionality

reduction?

A: Want features to

capture meaningful

factors of variation in

data

Credit: cs231n, Stanford

Originally: Linear +

nonlinearity (sigmoid)

Later: Deep, fully-

connected

Later: ReLU CNN

Autoencoders

How to learn this feature representation?

Credit: cs231n, Stanford

Autoencoders

How to learn this feature representation?

Train such that features can be used to reconstruct

original data “Autoencoding” - encoding itself

Credit: cs231n, Stanford

Autoencoders

How to learn this feature representation?

Train such that features can be used to reconstruct

original data “Autoencoding” - encoding itself

Originally: Linear +

nonlinearity (sigmoid)

Later: Deep, fully-

connected

Later: ReLU CNN

Credit: cs231n, Stanford

Autoencoders

How to learn this feature representation?

Train such that features can be used to reconstruct

original data “Autoencoding” - encoding itself

Input Data

Reconstructed Data

Decoder: 4-layer upconv

Encoder: 4-layer conv

Credit: cs231n, Stanford

Autoencoders

Train such that features can be used to

reconstruct original data

L2 Loss Function

Credit: cs231n, Stanford

Reconstructed Data

Decoder: 4-layer upconv

Encoder: 4-layer conv

Input Data

Autoencoders

Train such that features can be used to

reconstruct original data

L2 Loss Function

Credit: cs231n, Stanford

Reconstructed Data

Decoder: 4-layer upconv

Encoder: 4-layer conv

Input Data

Doesn’t use labels!

Autoencoders

Input Data

Encoder: 4-layer conv

Decoder: 4-layer

upconvAfter training,

throw away decoder

Credit: cs231n, Stanford

Autoencoders

Credit: cs231n, Stanford

Autoencoders

Loss Function

(Softmax, etc.)

Encoder can be used to

initialize a supervised model

Credit: cs231n, Stanford

Autoencoders

Loss Function

(Softmax, etc.)

Encoder can be used to

initialize a supervised model

Fine-tune

encoder

jointly with

classifier

Train for final task

(sometimes with

small data)

Credit: cs231n, Stanford

Generative tasks

• Generation (from scratch): learn to sample from the

distribution represented by the training set

• Unsupervised learning task

Generative tasks

• Generation conditioned on class label

Figure source

https://arxiv.org/pdf/1805.08318.pdf

Generative tasks

• Generation conditioned on image (image-to-image

translation)

P. Isola, J.-Y. Zhu, T. Zhou, A. Efros, Image-to-Image Translation with Conditional Adversarial

Networks, CVPR 2017

https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/

Designing a network for generative tasks

1. We need an architecture that can generate an image

• Recall upsampling architectures for dense prediction

Random

seed or

latent code

Unconditional

generation

Designing a network for generative tasks

1. We need an architecture that can generate an image

• Recall upsampling architectures for dense prediction

Random

seed or

latent code

Unconditional

generation

• Sample from a simple distribution, e.g.

random noise.

• Learn transformation to training distribution.

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014 Credit: cs231n, Stanford

Designing a network for generative tasks

1. We need an architecture that can generate an image

• Recall upsampling architectures for dense prediction

Random

seed or

latent code

Unconditional

generation

• Sample from a simple distribution, e.g.

random noise.

• Learn transformation to training distribution.

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014 Credit: cs231n, Stanford

A neural network can be

used to represent

this complex

transformation?

Designing a network for generative tasks

1. We need an architecture that can generate an image

• Recall upsampling architectures for dense prediction

Image-to-image translation

• Sample from a simple distribution, e.g.

random noise.

• Learn transformation to training distribution.

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014 Credit: cs231n, Stanford

A neural network can be

used to represent

this complex

transformation?

Designing a network for generative tasks

1. We need an architecture that can generate an image

• Recall upsampling architectures for dense prediction

2. We need to design the right loss function

Learning to sample

Training data 𝑥 ~ 𝑝data Generated samples 𝑥 ~ 𝑝model

We want to learn 𝑝model that matches 𝑝data

Adapted from Stanford CS231n

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture12.pdf

Generative adversarial networks

• Train two networks with opposing objectives:

• Generator: learns to generate samples

• Discriminator: learns to distinguish between generated and real

samples

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, Y. Bengio, Generative adversarial nets, NIPS 2014

𝐺
Random noise 𝑧

𝐷
“Fake”

𝐷
“Real”

Figure adapted

from F. Fleuret

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://fleuret.org/ee559/ee559-slides-10-1-GAN.pdf

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014 Fake and real images copyright Emily Denton et al. 2015. Credit: cs231n, Stanford

Generative adversarial networks

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014 Fake and real images copyright Emily Denton et al. 2015. Credit: cs231n, Stanford

Generative adversarial networks

GAN objective

• The discriminator 𝐷(𝑥) should output the probability that the

sample 𝑥 is real

• That is, we want 𝐷(𝑥) to be close to 1 for real data and close to 0 for

fake

• Expected conditional log likelihood for real and generated

data:

 𝔼𝑥~𝑝data
log 𝐷(𝑥)

 = 𝔼𝑥~𝑝data
log 𝐷(𝑥) + 𝔼𝑧~𝑝log(1 − 𝐷 𝐺(𝑧))

We seed the generator with noise 𝑧

drawn from a simple distribution 𝑝

(Gaussian or uniform)

+ 𝔼𝑥~𝑝gen
log 1 − 𝐷 𝑥

GAN objective

𝑉 𝐺, 𝐷 = 𝔼𝑥~𝑝data
log 𝐷(𝑥) + 𝔼𝑧~𝑝log(1 − 𝐷 𝐺(𝑧))

• The discriminator wants to correctly distinguish real and fake

samples:

𝐷∗ = arg max𝐷 𝑉(𝐺, 𝐷)

• The generator wants to fool the discriminator:

𝐺∗ = arg min𝐺 𝑉(𝐺, 𝐷)

• Train the generator and discriminator jointly in a minimax

game

GAN objective: Theoretical properties

𝑉 𝐺, 𝐷 = 𝔼𝑥~𝑝data
log 𝐷(𝑥) + 𝔼𝑧~𝑝log(1 − 𝐷 𝐺(𝑧))

• Assuming unlimited capacity for generator and discriminator

and unlimited training data:

• The objective min𝐺 max𝐷𝑉 𝐺, 𝐷 is equivalent to Jensen-Shannon

divergence between 𝑝data and 𝑝gen and global optimum (Nash

equilibrium) is given by 𝑝data = 𝑝gen

GAN objective: Theoretical properties

𝑉 𝐺, 𝐷 = 𝔼𝑥~𝑝data
log 𝐷(𝑥) + 𝔼𝑧~𝑝log(1 − 𝐷 𝐺(𝑧))

• Assuming unlimited capacity for generator and discriminator

and unlimited training data:

• The objective min𝐺 max𝐷𝑉 𝐺, 𝐷 is equivalent to Jensen-Shannon

divergence between 𝑝data and 𝑝gen and global optimum (Nash

equilibrium) is given by 𝑝data = 𝑝gen

• If at each step, 𝐷 is allowed to reach its optimum given 𝐺, and 𝐺 is

updated to decrease 𝑉 𝐺, 𝐷 , then 𝑝gen will eventually converge to

𝑝data

GAN training

𝑉 𝐺, 𝐷 = 𝔼𝑥~𝑝data
log 𝐷(𝑥) + 𝔼𝑧~𝑝log(1 − 𝐷 𝐺(𝑧))

• Alternate between

• Gradient ascent on discriminator:

𝐷∗ = arg max𝐷 𝑉 𝐺, 𝐷

• Gradient descent on generator (minimize log-probability of

discriminator being right):

𝐺∗ = arg min𝐺 𝑉 𝐺, 𝐷
= arg min𝐺 𝔼𝑧~𝑝log(1 − 𝐷 𝐺(𝑧))

• In practice, do gradient ascent on generator (maximize log-probability

of discriminator being wrong):

𝐺∗ = arg max𝐺 𝔼𝑧~𝑝log(𝐷 𝐺(𝑧))

Non-saturating GAN loss (NSGAN)

min𝑤𝐺
𝔼𝑧~𝑝 log(1 − 𝐷 𝐺(𝑧)) vs. max𝑤𝐺

𝔼𝑧~𝑝 log(𝐷 𝐺(𝑧))

Minimize log-probability of

discriminator being right

Maximize log-probability of

discriminator being wrong

Non-saturating GAN loss (NSGAN)

min𝑤𝐺
𝔼𝑧~𝑝 log(1 − 𝐷 𝐺(𝑧)) vs. max𝑤𝐺

𝔼𝑧~𝑝 log(𝐷 𝐺(𝑧))

log(1 − 𝐷(𝐺(𝑧))

−log(𝐷(𝐺(𝑧))

Want to learn

from confidently

rejected sample

but gradients

here are small

These samples

already fool the

discriminator so we

don’t need large

gradients here

Small gradients for

high-quality samples

Large gradients for

low-quality samples

Figure source

Low discriminator score

(low-quality samples)

High discriminator score

(high-quality samples)

https://cs.uwaterloo.ca/~mli/Deep-Learning-2017-Lecture7GAN.ppt

NSGAN training algorithm

• Update discriminator:

• Repeat for 𝑘 steps:

• Sample mini-batch of noise samples 𝑧1, … , 𝑧𝑚 and

mini-batch of real samples 𝑥1, … , 𝑥𝑚

• Update parameters of 𝐷 by stochastic gradient ascent on
1

𝑚
෍

𝑚

log 𝐷(𝑥𝑚) + log(1 − 𝐷 𝐺(𝑧𝑚))

• Update generator:

• Sample mini-batch of noise samples 𝑧1, … , 𝑧𝑚

• Update parameters of 𝐺 by stochastic gradient ascent on
1

𝑚
෍

𝑚

log 𝐷 𝐺(𝑧𝑚)

• Repeat until happy with results

NSGAN training algorithm

• Update discriminator:

• Repeat for 𝑘 steps:

• Sample mini-batch of noise samples 𝑧1, … , 𝑧𝑚 and

mini-batch of real samples 𝑥1, … , 𝑥𝑚

• Update parameters of 𝐷 by stochastic gradient ascent on
1

𝑚
෍

𝑚

log 𝐷(𝑥𝑚) + log(1 − 𝐷 𝐺(𝑧𝑚))

• Update generator:

• Sample mini-batch of noise samples 𝑧1, … , 𝑧𝑚

• Update parameters of 𝐺 by stochastic gradient ascent on
1

𝑚
෍

𝑚

log 𝐷 𝐺(𝑧𝑚)

• Repeat until happy with results

Some find k=1

more stable,

others use k > 1,

no best rule.

Recent work (e.g.

Wasserstein GAN)

alleviates this

problem, better

stability!

GAN: Conceptual picture

• Update discriminator: push 𝐷(𝑥data) close to 1 and 𝐷 𝐺(𝑧)

close to 0

• The generator is a “black box” to the discriminator

𝑧 𝐺 𝐷
𝐺(𝑧)

𝐷 𝐺(𝑧)

𝑥data

𝐷(𝑥data)

GAN: Conceptual picture

• Update generator: increase 𝐷 𝐺(𝑧)

• Requires back-propagating through the composed generator-

discriminator network (i.e., the discriminator cannot be a black box)

• The generator is exposed to real data only via the output of the

discriminator (and its gradients)

𝑧 𝐺 𝐷 𝐷 𝐺(𝑧)
𝐺(𝑧)

GAN: Conceptual picture

• Test time – the discriminator is discarded

𝑧 𝐺 𝐺(𝑧)

https://poloclub.github.io/ganlab/

GAN Demo

https://poloclub.github.io/ganlab/

Original GAN results

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, Y. Bengio, Generative adversarial nets, NIPS 2014

Nearest real image for

sample to the left

MNIST digits Toronto Face Dataset

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

• Early, influential convolutional architecture for generator

DCGAN

A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep

convolutional generative adversarial networks, ICLR 2016

Four transposed convolution layers

with ReLU activations
Tanh activations

in the last layer

Uniformly

distributed

input

Linear

transformation

https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf

• Early, influential convolutional architecture for generator

• Discriminator architecture:

• Don’t use pooling, only strided convolutions

• Use Leaky ReLU activations (sparse gradients cause problems for

training)

• Use only one FC layer before the softmax output

• Use batch normalization after most layers (in the generator also)

DCGAN

A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep

convolutional generative adversarial networks, ICLR 2016

https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf

DCGAN results

Generated bedrooms after one epoch

DCGAN results

Generated bedrooms after five epochs

DCGAN results

More bedrooms

Source: F. Fleuret

Problems with GAN training

• Stability

• Parameters can oscillate or diverge, generator loss does not

correlate with sample quality

• Behavior very sensitive to hyperparameter selection

Problems with GAN training

• Mode collapse

• Generator ends up modeling only a small subset of the training data

Source

Source

https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://arxiv.org/pdf/1701.00160.pdf

Some popular GAN flavors

• WGAN and improved WGAN (WGAN-GP)

• LSGAN

Wasserstein GAN (WGAN)

• Motivated by Wasserstein or Earth mover’s distance, which is

an alternative to JS divergence for comparing distributions

• In practice, use linear activation instead of sigmoid in the

discriminator and drop the logs from the objective:

min𝐺 max𝐷 𝔼𝑥~𝑝data
𝐷 𝑥 − 𝔼𝑧~𝑝𝐷 𝐺(𝑧)

• Due to theoretical considerations, important to ensure smoothness of

discriminator

• This paper’s suggested method is clipping weights to fixed range

[−𝑐, 𝑐]

M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, ICML 2017

https://arxiv.org/pdf/1701.07875.pdf

Wasserstein GAN (WGAN)

• Benefits (claimed)

• Better gradients, more stable training

M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, ICML 2017

https://arxiv.org/pdf/1701.07875.pdf

Wasserstein GAN (WGAN)

• Benefits (claimed)

• Better gradients, more stable training

• Objective function value is more meaningfully related to quality of

generator output

Original GAN divergence WGAN divergence

M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, ICML 2017

https://arxiv.org/pdf/1701.07875.pdf

Improved Wasserstein GAN (WGAN-GP)

• Weight clipping leads to problems with discriminator training

• Improved Wasserstein discriminator loss:

𝔼 ෤𝑥~𝑝gen
𝐷 ෤𝑥 − 𝔼𝑥~𝑝real

𝐷 𝑥

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of Wasserstein GANs, NIPS 2017

Unit norm gradient penalty on

points ො𝑥 obtained by interpolating

real and generated samples

+ 𝜆 𝔼 ො𝑥~𝑝ෝ𝑥
𝛻ො𝑥𝐷(ො𝑥) 2 − 1 2

https://arxiv.org/pdf/1704.00028.pdf

Improved Wasserstein GAN: Results

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of Wasserstein GANs, NIPS 2017

https://arxiv.org/pdf/1704.00028.pdf

Least Squares GAN (LSGAN)

• Use least squares cost for generator and discriminator

• Equivalent to minimizing Pearson 𝜒2 divergence

𝐷∗ = arg min𝐷 𝔼𝑥~𝑝data
𝐷 𝑥 − 1 2 + 𝔼𝑧~𝑝(𝐷 𝐺(𝑧))2

𝐺∗ = arg min𝐺 𝔼𝑧~𝑝(𝐷 𝐺 𝑧 − 1)2

Push discrim.

response on real

data close to 1

Push response on

generated data close to 0

Push response on

generated data close to 1

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, Least squares generative adversarial networks,

ICCV 2017

http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf

Least Squares GAN (LSGAN)

• Benefits (claimed)

• Higher-quality images

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, Least squares generative adversarial networks,

ICCV 2017

http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf

Least Squares GAN (LSGAN)

• Benefits (claimed)

• Higher-quality images

• More stable and resistant to mode collapse

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, Least squares generative adversarial networks,

ICCV 2017

http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf

Progressive GANs

T. Karras, T. Aila, S. Laine, J. Lehtinen. Progressive Growing of GANs for Improved

Quality, Stability, and Variation. ICLR 2018

Realistic face images up to 1024 x 1024 resolution

https://openreview.net/pdf?id=Hk99zCeAb
https://openreview.net/pdf?id=Hk99zCeAb

Progressive GANs

• Key idea: train lower-resolution models, gradually add layers

corresponding to higher-resolution outputs

Source

T. Karras, T. Aila, S. Laine, J. Lehtinen. Progressive Growing of GANs for Improved

Quality, Stability, and Variation. ICLR 2018

https://cdn-images-1.medium.com/max/1600/1*tUhgr3m54Qc80GU2BkaOiQ.gif
https://openreview.net/pdf?id=Hk99zCeAb
https://openreview.net/pdf?id=Hk99zCeAb

Progressive GANs: Results

256 x 256 results for LSUN categories

StyleGAN

T. Karras, S. Laine, T. Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019

• Built on top of Progressive GAN

• Start with learned constant

(instead of noise vector)

• Use a mapping network to

produce a style code 𝑤 using

learned affine transformations 𝐴

• Use adaptive instance

normalization (AdaIN): scale and

bias each feature map using

learned style values

• Add noise after each convolution

and before nonlinearity (enables

stochastic detail)

https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf

StyleGAN: Results

T. Karras, S. Laine, T. Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019

https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf

StyleGAN: Bedrooms

T. Karras, S. Laine, T. Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019

https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf

StyleGAN: Cars

T. Karras, S. Laine, T. Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019

https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf

Image-to-Image Translation

• Conditional GAN (cGAN)

• Cycle-Consistent Adversarial Network
(CycleGAN)

• Perceptual Cyclic-Synthesized Generative
Adversarial Networks (PCSGAN)

1. Isola, Phillip, et al. Image-to-image translation with conditional adversarial networks. CVPR 2017.
2. Zhu, Jun-Yan, et al. Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial

Networks. CVPR 2017.
3. Babu, Kancharagunta Kishan, and Shiv Ram Dubey. PCSGAN: Perceptual Cyclic-Synthesized Generative

Adversarial Networks for Thermal and NIR to Visible Image Transformation. Neurocomputing, 2020.

Image-to-Image Translation

Image-to-Image Translation: GAN

Image-to-Image Translation: Conditional GAN

Isola, Phillip, et al. Image-to-image translation with conditional adversarial networks. CVPR 2017.

Image-to-Image Translation: Conditional GAN

Isola, Phillip, et al. Image-to-image translation with conditional adversarial networks. CVPR 2017.

Image-to-Image Translation: Conditional GAN

Isola, Phillip, et al. Image-to-image translation with conditional adversarial networks. CVPR 2017.

Image-to-Image Translation: Cycle GAN

Zhu, Jun-Yan, et al. Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks. CVPR 2017.

Image-to-Image Translation: Cycle GAN

https://hardikbansal.github.io/CycleGANBlog/

Image-to-Image Translation: Cycle GAN

Zhu, Jun-Yan, et al. Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks. CVPR 2017.

Image-to-Image Translation: PCSGAN

K.K. Babu and S.R. Dubey. PCSGAN: Perceptual Cyclic-Synthesized Generative Adversarial Networks for Thermal and NIR to
Visible Image Transformation. Neurocomputing, 2020.

Image-to-Image Translation: PCSGAN

K.K. Babu and S.R. Dubey. PCSGAN: Perceptual Cyclic-Synthesized Generative Adversarial Networks for Thermal and NIR to
Visible Image Transformation. Neurocomputing, 2020.

1st Column – Input Image

2nd Column – Pix2Pix

3rd Column – DualGAN

4th Column – CycleGAN

5th Column – PCSGAN

6th Column – Target Image

Image-to-Image Translation: PCSGAN

K.K. Babu and S.R. Dubey. PCSGAN: Perceptual Cyclic-Synthesized Generative Adversarial Networks for Thermal and NIR to
Visible Image Transformation. Neurocomputing, 2020.

Results comparison over the WHU-IIP face dataset.

SSIM - Structural Similarity Index Measure

MSE - Mean Square Error

PSNR - Peak Signal Noise to Ratio

LPIPS - Learned Perceptual Image Patch Similarity

MSSIM - Multi-scale SSIM

GAN: Other Applications: Generate Cartoon Characters

Generate Cartoon Characters

Example of GAN-Generated Anime
Character Faces.
Taken from Towards the Automatic
Anime Characters Creation with
Generative Adversarial Networks,
2017.

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

GAN: Other Applications: Text-to-Image Translation

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

Text-to-Image Translation
(text2image)

Example of Textual
Descriptions and GAN-
Generated Photographs of
Birds
Taken from StackGAN: Text
to Photo-realistic Image
Synthesis with Stacked
Generative Adversarial
Networks, 2016.

GAN: Other Applications: Face Frontal View Generation

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

Face Frontal View Generation

Example of GAN-based Face Frontal View Photo Generation
Taken from Beyond Face Rotation: Global and Local Perception
GAN for Photorealistic and Identity Preserving Frontal View
Synthesis, 2017.

GAN: Other Applications: Face Aging

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

Face Aging

Example of Photographs of Faces Generated With a GAN With Different Apparent Ages.
Taken from Face Aging With Conditional Generative Adversarial Networks, 2017.

GAN: Other Applications: De-raining

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

De-raining

Example of Using a GAN to Remove
Rain From Photographs
Taken from Image De-raining Using
a Conditional Generative
Adversarial Network

GAN: Other Applications: Photo Inpainting

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

Photo Inpainting

Example of GAN-Generated
Photograph Inpainting Using
Context Encoders.
Taken from Context Encoders:
Feature Learning by Inpainting
describe the use of GANs,
specifically Context Encoders, 2016.

GAN: Other Applications: Super Resolution

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

Super Resolution

Example of GAN-Generated Images
With Super Resolution.
Taken from Photo-Realistic Single
Image Super-Resolution Using a
Generative Adversarial Network,
2016.

GAN: Other Applications: Dehazing

DehazeNet: An
End-to-End

System for Single
Image Haze

Removal

https://caibolun.github.io/DehazeNet/

https://github.com/hindupuravinash/the-gan-zoo

“The GAN Zoo”

“The GAN Zoo”

https://github.com/hindupuravinash/the-gan-zoo

“The GAN Zoo”

https://github.com/hindupuravinash/the-gan-zoo

And Many More …………….......

GANs: Things to Remember
Take game-theoretic approach: learn to generate from training distribution
through 2-player game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can’t solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many
others)
- Conditional GANs, GANs for all kinds of applications

Thank you

	Slide 1: Generative Adversarial Networks
	Slide 2
	Slide 3
	Slide 4: Outline
	Slide 5: Supervised vs Unsupervised Learning
	Slide 6: Supervised vs Unsupervised Learning
	Slide 7: Supervised vs Unsupervised Learning
	Slide 8: Supervised vs Unsupervised Learning
	Slide 9: Supervised vs Unsupervised Learning
	Slide 10: Supervised vs Unsupervised Learning
	Slide 11: Supervised vs Unsupervised Learning
	Slide 12: Supervised vs Unsupervised Learning
	Slide 13: Supervised vs Unsupervised Learning
	Slide 14: Autoencoders
	Slide 15: Autoencoders
	Slide 16: Autoencoders
	Slide 17: Autoencoders
	Slide 18: Autoencoders
	Slide 19: Autoencoders
	Slide 20: Autoencoders
	Slide 21: Autoencoders
	Slide 22: Autoencoders
	Slide 23: Autoencoders
	Slide 24: Autoencoders
	Slide 25: Autoencoders
	Slide 26: Autoencoders
	Slide 27: Autoencoders
	Slide 28: Generative tasks
	Slide 29: Generative tasks
	Slide 30: Generative tasks
	Slide 31: Designing a network for generative tasks
	Slide 32: Designing a network for generative tasks
	Slide 33: Designing a network for generative tasks
	Slide 34: Designing a network for generative tasks
	Slide 35: Designing a network for generative tasks
	Slide 36: Learning to sample
	Slide 37: Generative adversarial networks
	Slide 38: Generative adversarial networks
	Slide 39: Generative adversarial networks
	Slide 40: GAN objective
	Slide 41: GAN objective
	Slide 42: GAN objective: Theoretical properties
	Slide 43: GAN objective: Theoretical properties
	Slide 44: GAN training
	Slide 45: Non-saturating GAN loss (NSGAN)
	Slide 46: Non-saturating GAN loss (NSGAN)
	Slide 47: NSGAN training algorithm
	Slide 48: NSGAN training algorithm
	Slide 49: GAN: Conceptual picture
	Slide 50: GAN: Conceptual picture
	Slide 51: GAN: Conceptual picture
	Slide 52
	Slide 53: Original GAN results
	Slide 54: DCGAN
	Slide 55: DCGAN
	Slide 56: DCGAN results
	Slide 57: DCGAN results
	Slide 58: DCGAN results
	Slide 59: Problems with GAN training
	Slide 60: Problems with GAN training
	Slide 61: Some popular GAN flavors
	Slide 62: Wasserstein GAN (WGAN)
	Slide 63: Wasserstein GAN (WGAN)
	Slide 64: Wasserstein GAN (WGAN)
	Slide 65: Improved Wasserstein GAN (WGAN-GP)
	Slide 66: Improved Wasserstein GAN: Results
	Slide 67: Least Squares GAN (LSGAN)
	Slide 68: Least Squares GAN (LSGAN)
	Slide 69: Least Squares GAN (LSGAN)
	Slide 70: Progressive GANs
	Slide 71: Progressive GANs
	Slide 72: Progressive GANs: Results
	Slide 73: StyleGAN
	Slide 74: StyleGAN: Results
	Slide 75: StyleGAN: Bedrooms
	Slide 76: StyleGAN: Cars
	Slide 77: Image-to-Image Translation
	Slide 78: Image-to-Image Translation
	Slide 79: Image-to-Image Translation: GAN
	Slide 80: Image-to-Image Translation: Conditional GAN
	Slide 82: Image-to-Image Translation: Conditional GAN
	Slide 83: Image-to-Image Translation: Conditional GAN
	Slide 84: Image-to-Image Translation: Cycle GAN
	Slide 85: Image-to-Image Translation: Cycle GAN
	Slide 86: Image-to-Image Translation: Cycle GAN
	Slide 87: Image-to-Image Translation: PCSGAN
	Slide 88: Image-to-Image Translation: PCSGAN
	Slide 89: Image-to-Image Translation: PCSGAN
	Slide 90: GAN: Other Applications: Generate Cartoon Characters
	Slide 91: GAN: Other Applications: Text-to-Image Translation
	Slide 92: GAN: Other Applications: Face Frontal View Generation
	Slide 93: GAN: Other Applications: Face Aging
	Slide 94: GAN: Other Applications: De-raining
	Slide 95: GAN: Other Applications: Photo Inpainting
	Slide 96: GAN: Other Applications: Super Resolution
	Slide 97: GAN: Other Applications: Dehazing
	Slide 98: “The GAN Zoo”
	Slide 99: “The GAN Zoo”
	Slide 100: “The GAN Zoo”
	Slide 101: GANs: Things to Remember
	Slide 102: Thank you

