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DISCLAIMER

The content (text, image, and graphics) used in this slide are
adopted from many sources for Academic purposes. Broadly,
the sources have been given due credit appropriately. However,
there is a chance of missing out some original primary
sources. The authors of this material do not claim any
copyright of such material.




Recall: (2D) Image Classification

(assume given a set of possible labels)
{dog, cat, truck, plane, ...}

> cat

This image by Nikita is licensed under
CC-BY 2.0

Slide Credit: cs231n @


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

Recall: (2D) Detection And Segmentation

Semantic Object Instance

Classification Segmentation Detection Segmentation

CAT GRASS, CAT.

DOG, DOG, CA
Y RN TREE, SKY VRN )
v v . v |
No spatial extent No objects, just pixels Multiple Objects ... ccommemmns

Slide Credit: cs231n @


https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Today: Video = 2D + Time

A video is a sequence of images
4D tensor: Tx 3 x HxW
(or3xTxHxW)

b SaE ::'..
{
Slide Credit: ¢s231n


https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Example Task: Video Classification

Input video:
Tx3XHxW

Running video is in the public domain

Swimming
Running
Jumping
Eating
Standing

Slide credit: Justin Johnson @



Example Task: Video Classification

| _ Dog
Images: Recognize objects .+

Fish
Truck

| | _ Swimming
Videos: Recognize actions Running

Jumping
Eating
Standing

Running video is in the public domain
Slide credit: Justin Johnson @




Problem: Videos are big!

Videos are ~30 frames per second (fps)

Size of uncompressed video
(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute
Input video: HD (1920 x 1080): ~10 GB per minute

TX3XHXW

{
Slide credit: Justin Johnson @



Problem: Videos are big!

Videos are ~30 frames per second (fps)

Size of uncompressed video
(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute
Input video: HD (1920 x 1080): ~10 GB per minute

TX3XHXW

Solution:

Train on short clips: low fps and low spatial resolution
e.g. T =16 (3.2 seconds at 5 fps), H=W=112

~588 KB - @
Slide credit: Justin Johnson



Training on Clips
Raw video: Long, high FPS

T T P T N T N N T T

Slide credit: Justin Johnson Q



Training on Clips
Raw video: Long, high FPS

) il w $ i [ f )
,“ ! / 3 "'y 4

Training: Train model to classify short clips with low FPS

o N

Slide credit: Justin Johnson @



Training on Clips
Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS

[ R

Testing: Run model on different clips, average predictions

Slide credit: Justin Johnson @



Video Classification: Single-Frame CNN

Simple idea: train normal 2D CNN to classify video frames independently!
(Average predicted probs at test-time)
Often a very strong baseline for video classification

“‘Running” “Running” “Running” “Running” “Running” “Running”

/CNN\/CNN\/CNN\/CNN\/CNN\/CNN\

- - -

4 2 % "x;;'i 3 B’ \
{
Slide credit: Justin Johnson @




Video Classification: Late Fusion (with FC layers)

Intuition: Get high-level Class scores: C
appearance of each frame, and Run 2D CNN on each
combine them Clip features: MLP frame, concatenate
TDH'W’ features and feed to MLP
-
Flatten

Frame features
TxDxH xW r r r r r r

2 o) [ow] o ow o e
frame P | P | P P | P

Input:
TX3XHXW/|

fi
Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014 Slide credit: Justin Johnson @



Video Classification: Late Fusion (with pooling)

Intuition: Get high-level Class scores: C 2un 2D CNN on each

appearance of each frame, and P

combine them _ frame, pool features
Clip features: D Llnerar and feed to Linear

Frame features Average Pool over space and time

TxDxH xW r r r r r

F
o) o] ow| fow o e
frame P | P | P P | P

Input:
TXxX3xHxXxW

Slide credit: Justin Johnson @




Video Classification: Late Fusion (with pooling)

Intuition: Get high-level Class scores: C

Run 2D CNN on each
appearance of each frame, and P ; f
combine them _ rame, pool gatures
. _ Linear and feed to Linear
Clip features: D P

Frame features Average Pool over space and time

TxDxH xW r r r r r

F
o) o] ow| fow o e
frame P | P | P P | P

Input:
TXxX3xHxXxW

Problem: Hard to compare @
low-level motion between frames Slide credit: Justin Johnson




Video Classification: Early Fusion

Intuition: Compare frames
with very first conv layer,
after that normal 2D CNN Class scores: C

P

Rest of the
First 2D convolution network is
collapses all temporal standard 2D CNN
information: 2 D C N N

Input: ST xHxW
Reshape: Output: D x H x W

3T xHxW — V'

Input:
Tx3xXxHxXxW

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014 Slide credit: Justin Johnson @



Video Classification: Early Fusion

Intuition: Compare frames
with very first conv layer,
after that normal 2D CNN Class scores: C

P

Rest of the
First 2D convolution network is
collapses all temporal standard 2D CNN
information: 2 D C N N

Input: ST xHxW
Reshape: Output: D x H x W

3T x HxW — V‘

Input:
Tx3xXxHxXxW

Problem: One layer of temporal processing may not be enough!

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014 Slide credit: Justin Johnson @



Video Classification: 3D CNN

Intuition: Use 3D versions of
convolution and pooling to

slowly fuse temporal Class scores: C
information over the course of P

the network

Each layer in the network is a

4D t DXTxHxW
Use%nS?:Z)nv);ndXBD):aooling 3D CNN

operations

Input:
3XTxHXW|

Ji et al, “3D Convolutional Neural Networks for Human Action Recognition”, TPAMI 2010
Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014 Slide credit: Justin Johnson



Convolution Layer

activation map

__— 32x32x3 image

5x5x3 filter /
2
i>@ .

convolve (slide) over all

spatial locations
32 28

{
Slide Credit: cs231n @




3D Convolution

/
[Er\
T ——
\ "
B6X6X6 conv 5x5x5 conv 4x4x4 conv
Input: FC Class
CxTxHxW Layel’ Scores

{
Slide Credit: cs231n @



Early Fusion vs Late Fusion vs 3D CNN

Size Receptive Field
Layer (CxTxHXxW) (T x H x W)
Input 3x20x64x64
Late cConv2D(3x3,3->12) 12x20x64x641x3 X3

Fusion

(Small example
architectures, in
practice much

bigger)

{
Slide credit: Justin Johnson @



Early Fusion vs Late Fusion vs 3D CNN

Size Receptive Field
Layer (CxTxHXxW) (T x H x W)
Input 3x20x64x64
Late cConv2D(3x3,3->12) 12x20x64x641x3 X3

Fusion

Conv(3x3) 900000000 00000000000
(Small example
vt @O000000000000000000 architectures, in

practice much
bigger)

Slide credit: Justin Johnson @



Early Fusion vs Late Fusion vs 3D CNN

Size Receptive Field
Layer (CxTxHXxW) (T x H x W)
Input 3x20x64x64
Late cConv2D(3x3,3->12) 12x20x64x641x3 X3
Fusion Pool2D(4x4) 12x20x 16 x16 1 x 6 x 6

Pool(4x4)

booréocrfoongocsiocs

(Small example
00000000000000000000 i i

architectures, in
practice much

bigger)

Slide credit: Justin Johnson @

Conv(3x3)

Input



Early Fusion vs Late Fusion vs 3D CNN

Size Receptive Field
Layer (CxTxHXxW) (T x H x W)
Input 3x20x64x64
Late cConv2D(3x3,3->12) 12x20x64x641x3 X3 Build slowly in space
Fusion Pool2D(4x4) 12x20x16x16 1x6 x 6

Conv2D(3x3, 12->24) 24 x20x16x161x 14 x 14

Conv(3x3) .
Pool(4x4)

Conv(3x3)

ot @O000000000000000000

(Small example
architectures, in
practice much

bigger)

{
Slide credit: Justin Johnson @



Early Fusion vs Late Fusion vs 3D CNN

Size Receptive Field
Layer (CxTxHXxW) (T x H x W)
Input 3x20x64x64
Late cConv2D(3x3,3->12) 12x20x64x641x3 X3 Build slowly in space,
Fusion Pool2D(4x4) 12x20x16x161x6 x 6 All-at-once in time at end
Conv2D(3x3, 12->24) 24 x20x16x161x 14 x14
GlobalAvgPool 24 x1x1x1 20 x 64 x 64
GlobalAvg
Conv(3x3)
Pool(4x4)
Conv(3x3)
(Small example
InpUt ... . ........ . ... architectures’ in
practice much
bigger)

{
Slide credit: Justin Johnson @



Early Fusion vs Late Fusion vs 3D CNN

Late
Fusion

Early
Fusion

Size Receptive Field
Layer (CxTxHxW) (T x HxW)
Input 3x20x64x64
Conv2D(3x3, 3->12) 12x20x64x641x3x3
Pool2D(4x4) 12x20x16x161x6x6
Conv2D(3x3, 12->24) 24 x20x16x161x 14 x14
GlobalAvgPool 24 x1x1x1 20 x 64 x 64
Input 3x20x64x64
Conv2D(3x3, 3*20->12) 12 x 64 x 64 20x3x3
Pool2D(4x4) 12x16 x 16 20x6 x6
Conv2D(3x3, 12->24) 24 x16x 16 20x 14 x 14
GlobalAvgPool 24 x1x1 20 x 64 x 64

Build slowly in space,
All-at-once in time at end

Build slowly in space,
All-at-once in time at start

(Small example
architectures, in
practice much

bigger)

{
Slide credit: Justin Johnson @



Early Fusion vs Late Fusion vs 3D CNN

Size Receptive Field
Layer (CxTxHxW) (T x Hx W)
Input 3x20x64 x64
Late Conv2D(3x3,3->12) 12x20x64x641x3 X3 Build slowly in space,
Fusion Pool2D(4x4) 12x20x16Xx16 1 x6 x 6 All-at-once in time at end
Conv2D(3x3, 12->24) 24 x20x16x161x14 x 14
GlobalAvgPool 24 x1x1x1 20 x 64 x 64
Input 3x20x64x64
Ear|y Conv2D(3x3, 3*20->12) 12 x 64 x 64 20x3x3 Build slowly in space,
Fusion Pool2D(4x4) 12 x 16 x 16 20X 6 x6 All-at-once in time at start
Conv2D(3x3, 12->24) 24 x 16 x 16 20x 14 x 14
GlobalAvgPool 24 x1x1 20 x 64 x 64
InpUt 3x20x64 x64 Build slowly in space,
3D Conv3D(3x3x3, 3->12) 12x20x64 x64 3 x3x3 Build slowly in time (Small example
Pool3D(4x4x4) 12x5x16x16 6Xx6x6 Slow Fusion architectures, in
CNN Conv3D(3x3x3, 12->24) 24 x5x 16 x 16 14 x 14 x 14 Eirgggf)e much
GlobalAvgPool 24 x1x1 20 x 64 x 64

{
Slide credit: Justin Johnson @



Early Fusion vs Late Fusion vs 3D CNN

What is the
Layer ?c':zf T x Hx W) ?Te,fe,_,pﬂ‘(:,)ﬁe'd difference?
Input 3 x 20 x 64 x64
Late Conv2D(3x3,3->12) 12x20x64x641x3x3 Build slowly in space,
Fusion Pool2D(4x4) 12x20x 16 X161 x6 x 6 All-at-once in time at end
Conv2D(3x3, 12->24) 24 x20x16x161x14 x 14
GlobalAvgPool 24 x1x1x1 20 x 64 x 64
Input 3x20x64x64
Early Conv2D(3x3, 3*20->12) 12 x 64 x 64 20x3x3 Build slowly in space,
Fusion Pool2D(4x4) 12x 16 x 16 20X 6 X6 All-at-once in time at start
Conv2D(3x3, 12->24) 24 x16x 16 20x 14 x 14
GlobalAvgPool 24 x1x1 20 x 64 x 64
InpUt 3 x 20 x 64 x 64 Build slowly in space,
3D Conv3D(3x3x3, 3->12) 12x20x64 x64 3x3x3 Build slowly in time (Small example
Pool3D(4x4x4) 12x5x16x16 6X6X06 Slow Fusion architectures, in
CNN Conv3D(3x3x3, 12->24) 24 x5x 16 x16 14 x 14 x 14 Eirgggf)e much
GlobalAvgPool 24 x1x1 20 x 64 x 64

{
Slide credit: Justin Johnson @



2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Input: C._xTxHxW Weight: Output:
(3D grid with C,_-dim CxC_ xTx3x3 Co X HxW |
feat at each point) Slide over x and y 2D grid with C, ,—dim

feat at each point

T H =224

T=16
H = 224 >

T=16 C_, differentfilters

W =224

{
Slide credit: Justin Johnson @

W =224



2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Input: C._xTxHxW Weight: Output:
(3D grid with C,_-dim CxC_ xTx3x3 C X HxW |
feat at each point) Slide over x and y 2D grid with C, ,—dim

No temporal shift-invariance! feat at each point

Needs to learn separate filters
for the same motion at different
times in the clip

H = 224

T=16 C_, differentfilters

W =224

{
Slide credit: Justin Johnson @

W =224



2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Input: C._xTxHxW Weight: Output:
(3D grid with C,_-dim CxC_ xTx3x3 C X HxW |
feat at each point) Slide over x and y 2D grid with C, ,—dim

No temporal shift-invariance! feat at each point

Needs to learn separate filters
for the same motion at different
times in the clip

H = 224

T=16 C_, differentfilters

W =224
W =224 How to recognize blue to
transitions anywhere in space and time? Slide credit: Justin Johnson @



2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Input: C_ xTxHxW Weight: Output:
(3D grid with C,_-dim C_xC_ x3x3x3 CoaXTXxHXxW
feat at each point) 3D grid with C_ —dim

feat at each point

T / H =224

H = 224 /T=3

C,  different filters

T=16

W =224 How to recognize blue to W =224
transitions anywhere in space and time? Slide credit: Justin Johnson @



2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Input: C_ xTxHxW Weight: Output:
(3D grid with C,_-dim C_xC_ x3x3x3 CoaXTXxHXxW
feat at each point) Slide over x, y and t 3D grid with C, ,—dim

Temporal shift-invariant feat at each point

since each filter slides
over time!

T / H = 224
H =224 ii

C,  different filters

T=16

W =224 How to recognize blue to W =224
transitions anywhere in space and time? Slide credit: Justin Johnson @



2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Input: C._xTxHxW
(3D grid with C, -dim
feat at each point)

H =224

W =224

Weight: First-layer filters have shape

C xC x3x3x3 3(RGB)x4(frames)x5x5
out in (space)

Can visualize as video clips!

Slide over x, y and t

Temporal shift-invariant
since each filter slides
over timel

+ /7
6&;

Cout different filters

How to recognize blue to orange
transitions anywhere in space and time?

Slide credit: Justin Johnson @



Example Video Dataset: Sports-1M

e R egoarting
track cycling half marathon decathlon bikejoring aggressive inline skating
road bicycle racing running hurdles harness racing freestyle scootering
marathon marathon pentathlon skijoring freeboard (skateboard)
ultramarathon inline speed skating sprint (running) carting sandboarding

1 million YouTube videos Ground Truth

annotated with labels for 487 Correct prediction

different types of sports Incorrect prediction

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014 Slide credit: Justin Johnson @



Early Fusion vs Late Fusion vs 3D CNN
. Sports-1M Top-5 Accuracy

Single Frame

34 model works well
82 — always try this
80 first!

78 4

06 3D CNNs have
4 ' ﬁ improved a lot
2 since 2014!

Single Early Late
Frame Fusion Fusion CNN

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014 Slide credit: Justin Johnson @



C3D: The VGG of 3D CNNs

Input 3x16x112x112

3D CNN that uses all 3x3x3 conv and 2x2x2 Conv1 (3x3x3) 64 x 16 x 112 x 112

. . . Pool1 (1x2x2 64 x 16 x 56 x 56
pooling (except Pool1 which is 1x2x2) colTiho®) | SEXTOXOOX

Conv2 (3x3x3) 128 x 16 x 56 x 56

Pool2 (2x2x2) 128 x 8 x 28 x 28

Released model pretrained on Sports-1M:
Many people used this as a video feature Comab (3x3x3) | 256 %8 X 28X 28
extractor Pool3 (2x2x2) 256 x 4 x 14 x 14

Conv4a (3x3x3) 512 x4 x 14 x14

Conv3a (3x3x3) 256 x 8 x 28 x 28

Conv4b (3x3x3) 512x4 x 14 x 14
Pool4 (2x2x2) 512x2x7x7

Convba (3x3x3) 9512x2x7x7

Convbb (3x3x3) 512x2x7x7

Pool5 512x1x3x3
FC6 4096
FC7 4096
FC8 C

{
Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015 Slide credit: Justin Johnson @



C3D: The VGG of 3D CNNs

Input 3x16x112x112

3D CNN that uses all 3x3x3 conv and 2x2x2 Convi (3x3x3) 64 x 16 x 112 x 112 1.04
pooling (except Pool1 which is 1x2x2) PoIT(1x2) | 84X 16X 5656

Conv2 (3x3x3) 128 x 16 x 56 x 56 11.10
Pool2 (2x2x2) 128 x 8 x 28 x 28
Released model pretralned on Sports-1M: T T I 55
Many people used this as a video feature Comab (3x3x3) | 256 %8 X 28X 28 1
extractor Pool3 (2x2x2) 256 x4 x 14 x 14
Conv4a (3x3x3) 512 x4 x 14 x14 2.77
Problem: 3x3x3 conv is very expensive! Conv4b (3x3x3)  512x 4 x 14 x 14 5.55
AleXNet' O 7 GFLOP Pool4 (2x2x2) 512x2x7x7
VGG_16 13 6 GFLOP Convba (3x3x3) 512x2x7x7 0.69
C3D 39 5 GFLOP (2 9X VGGI) Conv5b (3x3x3) 512x2x7x7 0.69
—_— ) ) ) Pool5 512x1x3x3
FC6 4096 0.51
FC7 4096 0.45
FC8 C 0.05

{
Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015 Slide credit: Justin Johnson @



Early Fusion vs Late Fusion vs 3D CNN
Sports-1M Top-5 Accuracy

86 -
384
82 -

80 i i

Slngle Early Late
Frame Fusion Fusion CNN

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014 Slide credit: Justin Johnson @
Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015 '



Recognizing Actions from Motion

We can easily recognize actions using only motion information

Johansson, “Visual perception of biological motion and a model for its analysis.” Perception & Psychophysics. 14(2):201-211. 1973. I
Slide credit: Justin Johnson



Measuring Motion: Optical Flow

Image at frame t

Image at frame t+1

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurlPS 2014 ) ) )
Slide credit: Justin Johnson



Measuring Motion: Optical Flow

Image at frame t

ol P ——
iF Y s t 2 ~
v > . p
N -1
r ’

Image at frame t+1

Optical flow gives a
displacement field F between
images |,and |,

U 4
FEE R L o I A e
v:;/////'l///”/'l//..,,,,,-.,-f
V. 1. L 7
N L ST
' L A i
UV 2 A STy "
Biddarsivis 2o
PERO R o Vot ol oty 5 T Sy
) T T o
y AT

yor AT T, | |
y AT T . |
)y T, |

Tells where each pixel will
move in the next frame:

F(x,y) = (dx, dy)
., (X+dx, y+dy) = (X, y)

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurlPS 2014

Slide credit: Justin Johnson @



Measuring Motion: Optical Flow Optical Flow highlights

i i local moti
Optical flow gives a ocal motion

displacement field F between Horizontal flow dx
images |,.and |, ,

Image at frame t

Tells where each pixel will ‘
move in the next frame:

F(x, y) = (dx, dy)

., (X+dx, y+dy) = (X, y)

Image at frame t+1

Vertical Flow dy

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurlPS 2014 ) ) ) {
Slide credit: Justin Johnson



Separating Motion and Appearance: Two-Stream Networks

Input: Single Image

3XHXxW
Spatial stream ConvNet
conv1 || conv2 || conv3 || conv4 || conv5 full6 full7 ||softmax
7X7x96 ||5x5%x256 || 3x3x512 || 3x3x512 || 3x3x512|| 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2
single frame pool 2x2 || pool 2x2
/
. Temporal stream ConvNet
‘ conv1 || conv2 || conv3 || conv4 || convS || full6 full7 [[softmax
7X7X96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512|| 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
input . norm. || pool 2x2 pool 2x2
video multi-frame pool 2x2
. optical flow

Input: Stack of optical flow: Early fusion: First 2D conv
[2*(T-1)] x Hx W processes all flow images

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurlPS 2014

{
Slide credit: Justin Johnson @



Separating Motion and Appearance: Two-Stream Networks

Accuracy on UCF-101

U1010)0)~~00 00 OO

3D CNN  Spatialonly Temporal Two-stream Two-stream
only (fuse by (fuse by
average) SVM)

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurlPS 2014 ) ) )
Slide credit: Justin Johnson



Modeling Long-term Temporal Structure

So far all our temporal CNNs only model local
motion between frames in very short clips of
~2-5 seconds. What about long-term structure?

First event 3 D Second event

CNN
—— S ———————

_ Y .
N~ Time

~5 seconds
Slide credit: Justin Johnson @




Modeling Long-term Temporal Structure

So far all our temporal CNNs only model local We know how to handle

motion between frames in very short clips of sequences! How about

~2-5 seconds. What about long-term structure? recurrent networks?
First event 3D Second event

CNN
R ——— e

_ Y .
N~ Time

~5 seconds
Slide credit: Justin Johnson @




Modeling Long-term Temporal Structure

Extract A
features

with CNN CNN CNN CNN CNN CNN
(2D or 3D)

Time

{
Slide credit: Justin Johnson @



Modeling Long-term Temporal Structure

Process local features using recurrent network (e.g. LSTM)
Extract A

features

with CNN CNN CNN CNN CNN CNN
(2D or 3D)

Time

{
Slide credit: Justin Johnson @



Modeling Long-term Temporal Structure

Process local features using recurrent network (e.g. LSTM)
Many to one: One output at end of video

A
| —— | — | —|
Extract A
features
with CNN CNN CNN CNN CNN CNN
(2D or 3D)
Time

{
Slide credit: Justin Johnson @



Modeling Long-term Temporal Structure

Process local features using recurrent network (e.g. LSTM)
Many to many: one output per video frame

A A A A A

Extract A

features

withCNN| / CNN \ / CNN \ / CNN \ / CNN \ / CNN \
(2D or 3D)

Time

{
Slide credit: Justin Johnson @




Modeling Long-term Temporal Structure

Extract

features
with CNN
(2D or 3D)

Sometimes don’t backprop to CNN to save
memory; pretrain and use it as a feature extractor

A

A A A A

| <
A
/ CNN \

< < <
/ CNN \ / CNN \ / CNN \ / CNN \

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011 Time
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015

{
Slide credit: Justin Johnson @



Modeling Long-term Temporal Structure

Inside CNN: Each value is a function of a fixed temporal window (local temporal structure)
Inside RNN: Each vector is a function of all previous vectors (global temporal structure)

Extract

features
with CNN
(2D or 3D)

Can we merge both approaches?

A
/ CNN \

/ CNN \ / CNN \ / CNN \ / CNN \

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011 Time
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015

{
Slide credit: Justin Johnson @



Recall: Multi-layer RNN

We can use a
similar structure to
process videos!

depth

Three-layer RNN

Yo Y1 Yo Y3 Ya Ys Ye
t+ + *+ + t t 1
h3 i h3 I h3 | 03 | D, |3l 03
t t £ttt 1
h2 | h2 |— hZ =t (h2_ | h? = 02—y h2
A A A A A
h! —®1h! —sih! (s h! 1 h' s h! s h',
A S S A M
X, X, X, X3 X4 X5 Xg

=

Slide Credit: ¢s231n
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Recurrent Convolutional Network

Layer 3
A

Layer 2
A

Layer 1
2Dconv A

Ballas et al, “Delving Deeper into Convolutional Networks for Learning Video Representations”, ICLR 2016

—>
A

—>
A
2D conv ‘

Entire network
uses 2D
feature maps:
CxHxW

Each depends
on two inputs:
1.Same layer,
previous
timestep
2.Prev layer,
same timestep

Use different weights

at each layer, share
I weights across time

{
Slide credit: Justin Johnson @



Recurrent Convolutional Network

Normal 2D CNN:

Input features:
CxHxW

2D Conv

>

Output features:

CxHxW

{
Slide credit: Justin Johnson @



Recurrent Convolutional Network  Recall: Recurrent Network
hi|= fW(}ht—la mt)

new state / old state

some function
with parameters W

Features from layer L,
timestep t-1  /
RNN-like
g —
recurrence

Features for layer
L, timestep t

Features from layer
L-1, timestep t

oot in s (@
Ballas et al, “Delving Deeper into Convolutional Networks for Learning Video Representations”, ICLR 2016 Slide credit: Justin Johnson O



Recurrent Convolutional Network Recall: Vanilla RNN
h;,, = tanh(Wyh; + W, x)

2D Conv Replace all matrix multiply
— > with 2D convolution!
Wy
Features from layer L,
timestep t-1
v tanh
®—
2D Conv A
—>
W, Features for layer
L, timestep t

Features from layer
L-1, timestep t

I
Ballas et al, “Delving Deeper into Convolutional Networks for Learning Video Representations”, ICLR 2016 Slide credit: Justin Johnson O



Modeling Long-term Temporal Structure

RNN: Infinite
temporal extent
(fully-connected)

| — 1|
CNN: finite
temporal extent CNN CNN
(convolutional)

—>

Time

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and
description”, CVPR 2015

Recurrent CNN: Infinite
temporal extent
(convolutional)

Recurrent
CNN

Recurrent

—>
—>
—

CNN

—>

—»

Time

Ballas et al, “Delving Deeper into Convolutional Networks for Learning

Video Representations”, ICLR 2016
[
Slide credit: Justin Johnson @



Modeling Long-term Temporal Structure

Problem: RNNs are slow for long
sequences (can't be parallelized) Recurrent CNN: Infinite

RNN: Infinite
temporal extent
(fully-connected) >

CNN: finite
temporal extent
(convolutional)

Tlme

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and
description”, CVPR 2015

temporal extent
(convolutional)

Recurrent
CNN

Recurrent

—>
—>
—

CNN

—>

—>

Time

Ballas et al, “Delving Deeper into Convolutional Networks for Learning

Video Representations”, ICLR 2016
[
Slide credit: Justin Johnson @



Recall: Self-Attention

Input vectors

XO y: ):2 Outputs:
RS context vectors: y (shape: 1)
I
= VO | @ a1 ay 2
.S Yo | Y1 Y2
1 Ve [T e e *qc‘)' Operations: ;
R . . L= Key vectors: k = xW,_ :
v, o |[B B < |\l vectors: v = x self—attfenhon
! ! ! Query vectors: q = xW
softmax (1) Alignment: e;;= ¢ k,/ D Xo || %1 || %2
f f ! Attention: a = softmax(e)
N XO — kO —>| €oo €01 €02 = OUtPUt: yj= zi ai,j
()
T X1 — ™ k1 —| €10 €11 €12 g
2
X2 — k2 —>| €39 €51 €2 <_E
T T T Inputs:
dQ || 9, | a, Input vectors: x (shape: N x D)
P 1

Slide credit: Justin Johnson Q



Spatio-Temporal Self-Attention (Nonlocal Block)

Input clip

3D
CNN

Features:
CxTxHxW

Nonlocal Block

[
Slide credit: Justin Johnson @
Wang et al, “Non-local neural networks”, CVPR 2018



Spatio-Temporal Self-Attention (Nonlocal Block)

Input clip

Queries:
CxTxHxW

1x1x1 Conv

Keys:
3D CxTxHxW

CNN

Features: etked) ey

CxTxHxW

Values:
CxTxHxW

1x1x1 Conv

Nonlocal Block

Wang et al, “Non-local neural networks”, CVPR 2018

{
Slide credit: Justin Johnson @



Spatio-Temporal Self-Attention (Nonlocal Block)

Input clip

Queries: Attention Weights
C' xTxHxW Transpose (THW) x (THW)

C softmax

1x1x1 Conv

Keys:
3D CxTxHxW

CNN

1x1x1 Conv

Features:
CxTxHxW

Values:
CxTxHxW

1x1x1 Conv

Nonlocal Block

[
Slide credit: Justin Johnson @
Wang et al, “Non-local neural networks”, CVPR 2018



Spatio-Temporal Self-Attention (Nonlocal Block)

Input clip

Queries: Attention Weights
C' xTxHxW Transpose (THW) x (THW)

C| softmax
Keys:
3D —1 C xTxHxW
>

1x1x1 Conv

CNN ) 1x1x1 Conv
Features:
CxTxHxW C' xTxHxW
Values: 4
CxTxHxW >
> C)
1x1x1 Conv

Nonlocal Block

[
Slide credit: Justin Johnson @
Wang et al, “Non-local neural networks”, CVPR 2018



Spatio-Temporal Self-Attention (Nonlocal Block)

Input clip

3D
CNN

Features:
CxTxHxW

Queries:
CxTxHxW

1x1x1 Conv

Keys:
C'xTxHxW

1x1x1 Conv

Values:
CxTxHxW

1x1x1 Conv

Nonlocal Block

Wang et al, “Non-local neural networks”, CVPR 2018

Transpose

C| softmax

B

Attention Weights
(THW) x (THW)

CxTxHxW

CxTxHxW

) 4

>()—>

1x1x1 Conv

{
Slide credit: Justin Johnson @



Spatio-Temporal Self-Attention (Nonlocal Block)

Input clip

3D
CNN

Features:
CxTxHxW

Queries:
CxTxHxW

1x1x1 Conv

Keys:
C'xTxHxW

1x1x1 Conv

Values:
CxTxHxW

1x1x1 Conv

Nonlocal Block

Wang et al, “Non-local neural networks”, CVPR 2018

Transpose

C| softmax
CxTxHxW

B

Residual Connection

Attention Weights
(THW) x (THW)

v

—P@—D

CxTxHxW

) 4

bQ(D_’ 1x1x1 Conv

{
Slide credit: Justin Johnson @



Spatio-Temporal Self-Attention (Nonlocal Block)

We can add nonlocal blocks into existing 3D CNN architectures.
But what is the best 3D CNN architecture?

Input clip

|

3D CNN

|

ures:
xxxxx

eries:
xxxxxxxx

lelelelelelele

Nonlocal Block

Wang et al, “Non-local neural networks”, CVPR 2018

\

3D CNN

/

es:
xxxxxxx

es:
xxxxxxxx

Nonlocal Block

\

3D CNN

/

Running

Slide credit: Justin Johnson @



Inflating 2D Networks to 3D (I13D)

We can add nonlocal blocks into existing 3D CNN architectures.
But what is the best 3D CNN architecture?

Idea: take a 2D CNN architecture.

Replace each 2D K, x K, conv/pool
layer with a 3D K, x K, x K, version

{
Slide credit: Justin Johnson @

Carreira and Zisserman, “Quo Vadis, Action Recognition? ANew Model and the Kinetics Dataset”, CVPR 2017



Inflating 2D Networks to 3D (I13D)

We can add nonlocal blocks into existing 3D CNN architectures.
But what is the best 3D CNN architecture?

Idea: take a 2D CNN architecture.
Inception Block: Original

Replace each 2D K, x K, conv/pool A
Iayer with a 3D KtX Kh X Kw version g Concatenate
A A A
ox5 3x3 1x1
Conv Conv Conv
" S
Conv
1x1 1x1 3x3
Conv Conv MaxPool
| + 4

Previous layer

{
Slide credit: Justin Johnson @

Carreira and Zisserman, “Quo Vadis, Action Recognition? ANew Model and the Kinetics Dataset”, CVPR 2017



Inflating 2D Networks to 3D (I13D)

We can add nonlocal blocks into existing 3D CNN architectures.
But what is the best 3D CNN architecture?

Idea: take a 2D CNN architecture.
Inception Block: Inflated

Replace each 2D K, x K, conv/pool A
Iayer with a 3D KtX Kh X Kw version g Concatenate
A A A
5x5x5 3x3x3 1x1x1
Conv Conv Conv
1x1x1 A A A
Conv
1x1x1 1x1x1 3x3x3
Conv Conv MaxPool
| + 4
Previous layer

{
Slide credit: Justin Johnson @

Carreira and Zisserman, “Quo Vadis, Action Recognition? ANew Model and the Kinetics Dataset”, CVPR 2017



Inflating 2D Networks to 3D (I13D)

We can add nonlocal blocks into existing 3D CNN architectures.

But what is the best 3D CNN architecture?

_ Input: 2D conv kernel:  Output:
Idea: take a 2D CNN architecture. 3x HxW C. xK xK,

Replace each 2D K, x K, conv/pool
layer with a 3D K, x K, x K, version

K, times, same!

Duplicate input K, Copy kernel Output is the
times

Can use weights of 2D conv to divide by

initialize 3D conv: copy K, times in

space and divide by K, -

This gives the same result as 2D

conv given “constant” video input llnput: 3D convkernel:  Output:
3xKxHXxW C xKxK xK, 1xHxW

Slide credit: Justin Johnson @

Carreira and Zisserman, “Quo Vadis, Action Recognition? ANew Model and the Kinetics Dataset”, CVPR 2017



Inflating 2D Networks to 3D (I13D)

We can add nonlocal blocks into existing 3D CNN architectures.
But what is the best 3D CNN architecture?

Idea: take a 2D CNN architecture. . Top-1 Accuracy on Kinetics-400

Replace each 2D K, x K conv/pool ;g |

layer with a 3D K x K, x K, version g5

60 :
Can use weights of 2D conv to 55 —¢
initialize 3D conv: copy K times in 50
space and divide by K, 45 —

40

ThIS glyes the same res..ult as 2D Per-framé CNN+LSTM Two-stream Inflated CNN Two-stream |
conv given “constant” video input CNN CNN inflated CNN

mTrain from scratch ®mPretrain on ImageNet
All using Inception CNN

Slide Credit: cs231n @

Carreira and Zisserman, “Quo Vadis, Action Recognition? ANew Model and the Kinetics Dataset”, CVPR 2017



Vision Transformers for Video

Factorized attention: Attend over space / time

MLP
| Head }—-» Class

Transformer|Encoder

Position + Token
Embedding

Embed to
tokens

'

Bertasius et al, “Is Space-Time Attention All You Need for Video Understanding?”, ICML 2021

¢

)

T

| MLP
(

Layer Norm ]

A

Lx Self-Attention

Multi-Head
Dot-Product
Attention

[ Layer Norm ]

Arnab et al, “ViViT: A Video Vision Transformer”, ICCV 2021
Neimark et al, “Video Transformer Network”, ICCV 2021

Pooling module: Reduce number of tokens

T
{ Add & Norm ]
T fﬁﬁ/’ x D
[ MatMul ]
-~ F
[ Softmax }
T 7AW x FEW THW x D
[ MatMul & Scale |
“Qfmm “Kfﬁwxn
(Foog)  (Foola]  [Poog)  [Pooiy ]
AQTHWXD T rEwxD T rEWxD
Linear Linear Linear
A \ A
THW x D

Fan et al, “Multiscale Vision Transformers”, ICCV 2021

Li et al, “MViTv2: Improved Multiscale Vision Transformers for
Classification and Detection”, CVPR 2022

Slide credit: Justin Johnson @



Vision Transformers for Video

Top-1 Accuracy on Kinetics-400
100"

90 - — 829 36.1

80 a2 2= B
/1.1

70 62_2_63_3656— — — —

60 — B — . :

50 ] l_. » |
40 —

Per-frame CNN+LSTM Two-Stream 13D Inflated SlowFast MVITV2-B, MViTv2-L
CNN CNN 13D 16x8+NL 32x3 13122
40x3

Li et al, “MViTv2: Improved Multiscale Vision Transformers for Classification and Detection”, CVPR 2022 Slide credit: Justin Johnson @



So Far: Classify Short Clips

| | _ Swimming
Videos: Recognize actions Running

Eating
Standing

{
Slide credit: Justin Johnson @



Temporal Action Localization

Given a long untrimmed video sequence, identify frames corresponding
to different actions

Running Jumping

Can use architecture similar to Faster R-CNN:
first generate temporal proposals then classify

Chao et al, ” Rethinking the Faster R-CNN Architecture for Temporal Action Localization”, CVPR2018 Slide credit: Justin Johnson @



Spatio-Temporal Detection

Given a long untrimmed video, detect all the people in both space and
time and classify the activities they are performing.
Some examples from AVADataset:

grab (a person) — hug look at phon — answer phone

[
Gu et al, “AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions”, CVPR2018 Slide credit: Justin Johnson @



Visually-guided Audio Source Separation

]

uolneiedss

[

[Gao et al. ECCV 2018, Afouras et al. Interspeech’18, Gabby et al. Interspeech’18, Owens & Efros ECCV’18,
Ephrat et al. SIGGRAPH’18, Zhao et al. ECCV 2018, Gao & Grauman ICCV 2019, Zhao et al. ICCV 2019, Xu et
al. ICCV 2019, Gan et al. CVPR 2020, Gao et al. CVPR 2021]
Slide Credit: cs231n @



Musical Instruments Source Separation

Train on 100,000 unlabeled multi-source video clips,
then separate audio for novel video.

RS —

“ Y, ha )
“4"’\ i :
Y 4 : ‘ .
L)
v &
RIVER FLOWSTIN . YOU:!

) I8

Gao & Grauman, Co-Separating Sounds of Visual Objects, ICCV 2019 Slide Credit: cs231n @

‘ original video ‘
(before separation)

object detections:
violin & flute

g

SRR VH 18 XGE T



Learning Audio-Visual Synchronization

Owens & Efros, Audio-visual scene analysis with self-supervised multisensory features, ECCV 2018
Korbar et al., Co-training of audio and video representations from self-supervised temporal synchronization, NeurlPS 2018

Slide Credit: ¢s231n @



Learning Audio-Visual Synchronization

Motion Loudness

Slide Credit: Andrew Owens @



Learning Audio-Visual Synchronization

Aligned vs.ﬁ_isaligned

3D Convgtion

3D Convgtion

3D Convolution
p- p—

3D Convgtion 1D Convolution

| 1D Convolution

1D Convolution

Slide Credit: ¢s231n @

Owens & Efros, Audio-visual scene analysis with self-supervised multisensory features, ECCV 2018



Multimodal Video Understanding

avg logits

classifier

classifier }

RGB frame patches

Multimodal
Bottlenecks

...........................

Audio spectrogram patches

t

Attention Bottlenecks for Multimodal Fusion, Nagrani et al. NeurlPS 2021

Target domain audio

Audio encoder
W«w— — AC)
b et \ ﬁ
Source domain audio  Audio-based attention Trancformer
()
Target domain video Attention vector
r.‘ i
A

Visual encoder

VE)

Audio prediction

-———

Source domain video

Absent-activity learning

Target domain Absent-activity loss

1 Pseudo-absent
1 label

! | —— IR —»:mﬂ]m:c

= ————

V’Eu'a_l pied‘ Etfén

Source domain

Audio-balanced learning % '[Im']]ﬁ
Audio-balanced Ioss

Assigning
weights
SR N
o

\ ."' = Clustering
..

@
\ T
i

Y

Activity class |

"arrange bell-pepper"

Y

Audio-Adaptive Activity Recognition Across Video
Domains, Yunhua et al. CVPR 2022

&P mean .hl softmax

EPIC-Fusion: Audio-Visual Temporal Binding for Egocentric
Action Recognition, Kazakos et al., ICCV 2019

Slide Credit: cs231n @
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Questions?
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