Indian Institute of Information Technology, Allahabad

Video Recognition and Understanding

Ву

Dr. Satish Kumar Singh & Dr. Shiv Ram Dubey
Computer Vision and Biometrics Lab
Department of Information Technology
Indian Institute of Information Technology, Allahabad

TEAM

Computer Vision and Biometrics Lab (CVBL)

Department of Information Technology

Indian Institute of Information Technology Allahabad

Course Instructors

Dr. Satish Kumar Singh, Associate Professor, IIIT Allahabad (Email: sk.singh@iiita.ac.in)

Dr. Shiv Ram Dubey, Assistant Professor, IIIT Allahabad (Email: srdubey@iiita.ac.in)

DISCLAINER

The content (text, image, and graphics) used in this slide are adopted from many sources for Academic purposes. Broadly, the sources have been given due credit appropriately. However, there is a chance of missing out some original primary sources. The authors of this material do not claim any copyright of such material.

Recall: (2D) Image Classification

This image by Nikita is licensed under CC-BY 2.0

(assume given a set of possible labels) {dog, cat, truck, plane, ...}

cat

Recall: (2D) Detection And Segmentation

Classification

CAT

No spatial extent

Semantic Segmentation

GRASS, CAT, TREE, SKY

No objects, just pixels

Object Detection



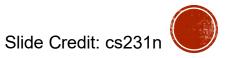
DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple Objects

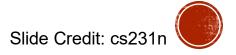
This image is CC0 public domain



Today: Video = 2D + Time

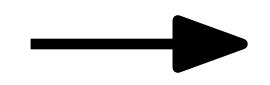
A video is a **sequence** of images
4D tensor: T x 3 x H x W
(or 3 x T x H x W)

This image is CC0 public domain



Example Task: Video Classification

Input video: T x 3 x H x W



Swimming
Running
Jumping
Eating
Standing

Example Task: Video Classification

Images: Recognize objects

Dog Cat Fish Truck

Videos: Recognize actions

Swimming Running
Jumping
Eating
Standing

Problem: Videos are big!

Input video: T x 3 x H x W

Videos are ~30 frames per second (fps)

Size of uncompressed video (3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute HD (1920 x 1080): ~10 GB per minute

Problem: Videos are big!

Input video: T x 3 x H x W

Videos are ~30 frames per second (fps)

Size of uncompressed video (3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute HD (1920 x 1080): ~10 GB per minute

Solution:

Train on short **clips**: low fps and low spatial resolution e.g. T = 16 (3.2 seconds at 5 fps), H=W=112

~588 KB

Training on Clips

Raw video: Long, high FPS

Training on Clips

Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS

Training on Clips

Raw video: Long, high FPS

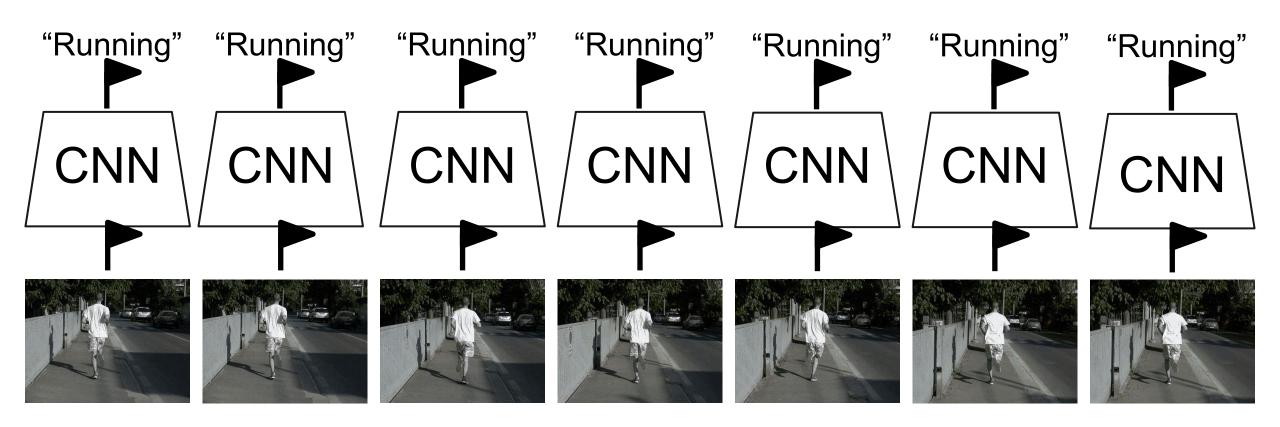
Training: Train model to classify short clips with low FPS

Testing: Run model on different clips, average predictions

Video Classification: Single-Frame CNN

Simple idea: train normal 2D CNN to classify video frames independently! (Average predicted probs at test-time)

Often a very strong baseline for video classification



Video Classification: Late Fusion (with FC layers)

Class scores: C **Intuition**: Get high-level Run 2D CNN on each appearance of each frame, and frame, concatenate combine them Clip features: **MLP** features and feed to MLP TDH'W' **Flatten** Frame features $T \times D \times H' \times W'$ CNN **CNN** CNN **CNN** CNN CNN 2D CNN on each frame Input: $T \times 3 \times H \times W$

Video Classification: Late Fusion (with pooling)

Class scores: C **Intuition**: Get high-level Run 2D CNN on each appearance of each frame, and frame, pool features combine them Linear and feed to Linear Clip features: D Average Pool over space and time Frame features $T \times D \times H' \times W'$ CNN **CNN** CNN CNN CNN CNN 2D CNN on each frame Input: Tx3xHxW

Video Classification: Late Fusion (with pooling)

Class scores: C **Intuition**: Get high-level Run 2D CNN on each appearance of each frame, and frame, pool features combine them Linear and feed to Linear Clip features: D Average Pool over space and time Frame features $T \times D \times H' \times W'$ CNN CNN CNN CNN CNN CNN 2D CNN on each frame Input: $T \times 3 \times H \times W$

Problem: Hard to compare low-level motion between frames

Video Classification: Early Fusion

Intuition: Compare frames with very first conv layer, after that normal 2D CNN

First 2D convolution

Input: 3T x H x W

Output: D x H x W

collapses all temporal information:

Reshape: $3T \times H \times W$

Input: Tx3xHxW

Class scores: C

2D CNN

Rest of the

network is

standard 2D CNN

Video Classification: Early Fusion

Intuition: Compare frames with very first conv layer, after that normal 2D CNN

information:

Input: 3T x H x W

Output: D x H x W

First 2D convolution collapses all temporal

Reshape: $3T \times H \times W$

Input: $T \times 3 \times H \times W$

Class scores: C

2D CNN

Rest of the

network is

standard 2D CNN

Problem: One layer of temporal processing may not be enough!

Video Classification: 3D CNN

Intuition: Use 3D versions of convolution and pooling to slowly fuse temporal information over the course of the network

Each layer in the network is a 4D tensor: D x T x H x W Use 3D conv and 3D pooling operations

3D CNN

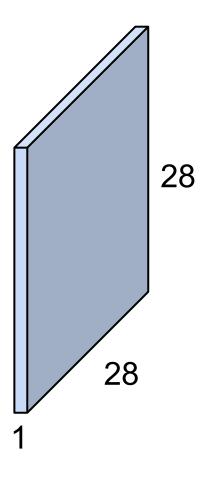
Class scores: C

Input: 3 x T x H x W

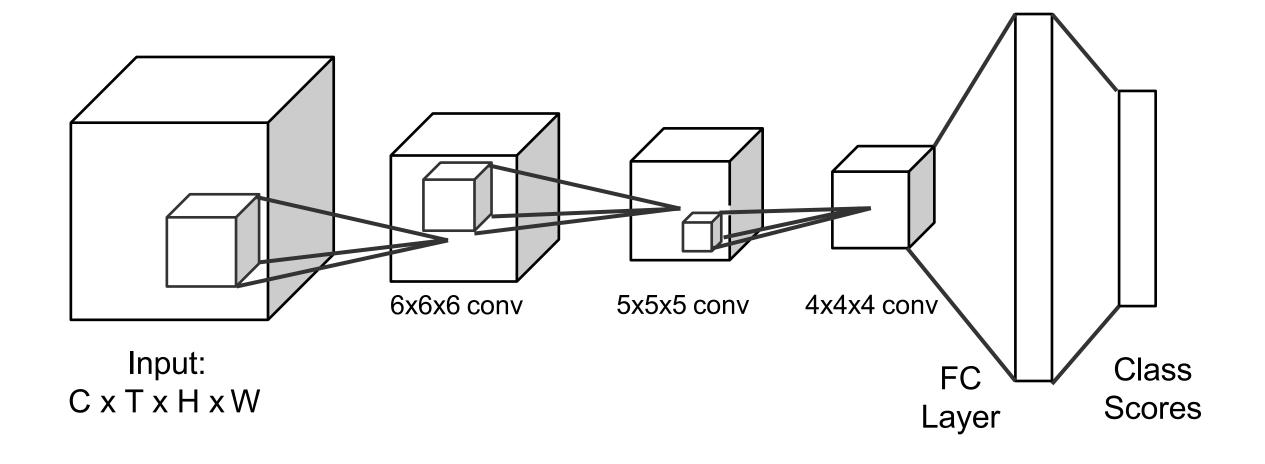
Convolution Layer

32x32x3 image 5x5x3 filter 32 convolve (slide) over all spatial locations 32

activation map



3D Convolution

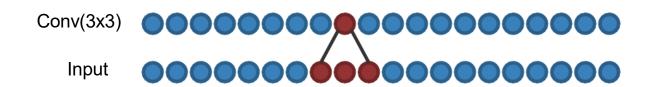


Late Fusion

Layer	Size (C x T x H x W)	Receptive Field (T x H x W)
Input	3 x 20 x 64 x 64	
Conv2D(3x3, 3->12)	12 x 20 x 64 x 64	1 x 3 x 3

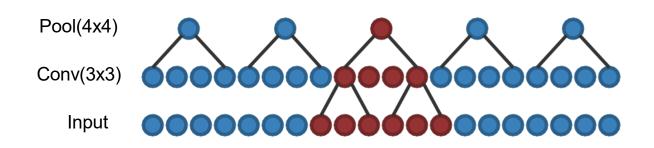
Late Fusion

Layer	Size (C x T x H x W)	Receptive Field (T x H x W)
Input	3 x 20 x 64 x 64	
Conv2D(3x3, 3->12)	12 x 20 x 64 x 64	1 x 3 x 3



Late Fusion

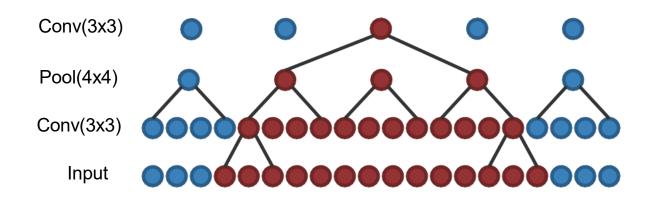
Layer	Size (C x T x H x W)	Receptive Field (T x H x W)
Input	3 x 20 x 64 x 64	
Conv2D(3x3, 3->12)	12 x 20 x 64 x 64	1 x 3 x 3
Pool2D(4x4)	12 x 20 x 16 x 16	1 x 6 x 6



Late Fusion

Layer	Size (C x T x H x W)	Receptive Field (T x H x W)
Input	3 x 20 x 64 x 64	
Conv2D(3x3, 3->12)	12 x 20 x 64 x 64	1 x 3 x 3
Pool2D(4x4)	12 x 20 x 16 x 16	1 x 6 x 6
Conv2D(3x3, 12->24)	24 x 20 x 16 x 16	1 x 14 x 14

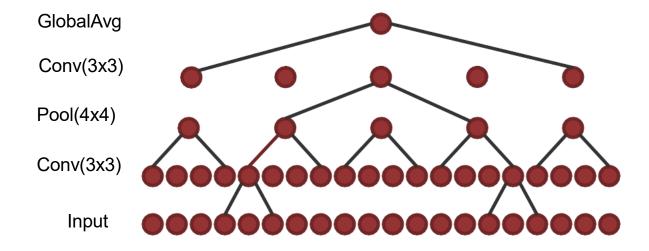
Build slowly in space



Late Fusion

Layer	$(C \times T \times H \times W)$	Receptive Field (T x H x W)
Input	3 x 20 x 64 x 64	
Conv2D(3x3, 3->12)	12 x 20 x 64 x 64	1 x 3 x 3
Pool2D(4x4)	12 x 20 x 16 x 16	1 x 6 x 6
Conv2D(3x3, 12->24)	24 x 20 x 16 x 16	1 x 14 x 14
GlobalAvgPool	24 x 1 x 1 x 1	20 x 64 x 64

Build slowly in space, All-at-once in time at end



Late Fusion

Early

Fusion

Receptive Field Size $(C \times T \times H \times W)$ Layer $(T \times H \times W)$ 3 x 20 x 64 x 64 Input Conv2D(3x3, 3->12)12 x 20 x 64 x 64 1 x 3 x 3 Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6 Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14 GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64 3 x 20 x 64 x 64 Input Conv2D(3x3, 3*20->12) 12 x 64 x 64 20 x 3 x 3 Pool2D(4x4) 12 x 16 x 16 20 x 6 x 6 Conv2D(3x3, 12->24) 24 x 16 x 16 20 x 14 x 14 GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Build slowly in space, All-at-once in time at end

Build slowly in space, All-at-once in time at start

Late Fusion

Early

Fusion

Receptive Field Size $(C \times T \times H \times W)$ Layer $(T \times H \times W)$ 3 x 20 x 64 x 64 Input Conv2D(3x3, 3->12)12 x 20 x 64 x 64 1 x 3 x 3 Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6 Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14 GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64 3 x 20 x 64 x 64 Input Conv2D(3x3, 3*20->12) 12 x 64 x 64 20 x 3 x 3 Pool2D(4x4) 12 x 16 x 16 20 x 6 x 6 Conv2D(3x3, 12->24) 20 x 14 x 14 24 x 16 x 16 GlobalAvgPool 24 x 1 x 1 20 x 64 x 64 3 x 20 x 64 x 64 Input 12 x 20 x 64 x 64 3 x 3 x 3 Conv3D(3x3x3, 3->12) Pool3D(4x4x4) 12 x 5 x 16 x 16 6 x 6 x 6 Conv3D(3x3x3, 12->24) 24 x 5 x 16 x 16 14 x 14 x 14 GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Build slowly in space, All-at-once in time at end

Build slowly in space, All-at-once in time at start

Build slowly in space, Build slowly in time "Slow Fusion"

(Small example architectures, in practice much bigger)

3D CNN

	Layer	Size (C x T x H x W)	Receptive Field (T x H x W)
	Input	3 x 20 x 64 x 64	,
Late	Conv2D(3x3, 3->12)	12 x 20 x 64 x 64	1 x 3 x 3
Fusion	Pool2D(4x4)	12 x 20 x 16 x 16	1 x 6 x 6
	Conv2D(3x3, 12->24)	24 x 20 x 16 x 16	1 x 14 x 14
	GlobalAvgPool	24 x 1 x 1 x 1	20 x 64 x 64
Early Fusion	Input	3 x 20 x 64 x 64	
	Conv2D(3x3, 3*20->12)	12 x 64 x 64	20 x 3 x 3
	Pool2D(4x4)	12 x 16 x 16	20 x 6 x 6
	Conv2D(3x3, 12->24)	24 x 16 x 16	20 x 14 x 14
	GlobalAvgPool	24 x 1 x 1	20 x 64 x 64
3D F	Input	3 x 20 x 64 x 64	
	Conv3D(3x3x3, 3->12)	12 x 20 x 64 x 64	3 x 3 x 3
	Pool3D(4x4x4)	12 x 5 x 16 x 16	6 x 6 x 6
	Conv3D(3x3x3, 12->24)	24 x 5 x 16 x 16	14 x 14 x 14
	GlobalAvgPool	24 x 1 x 1	20 x 64 x 64

What is the difference?

Build slowly in space, All-at-once in time at end

Build slowly in space, All-at-once in time at start

Build slowly in space, Build slowly in time "Slow Fusion"

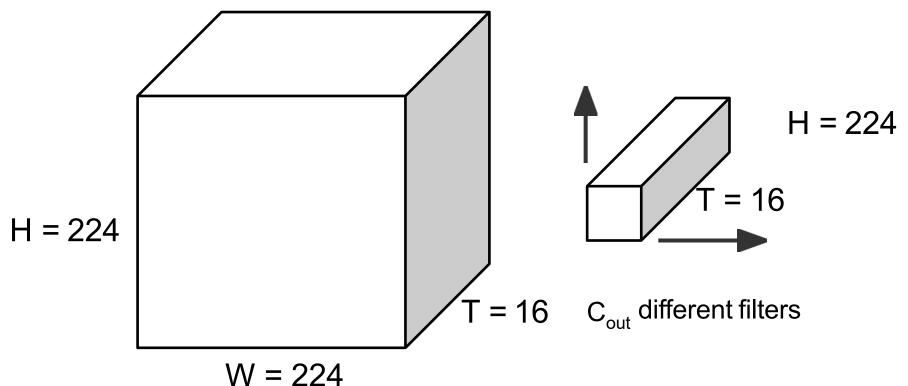
Input: $C_{in} \times T \times H \times W$ (3D grid with C_{in} -dim feat at each point)

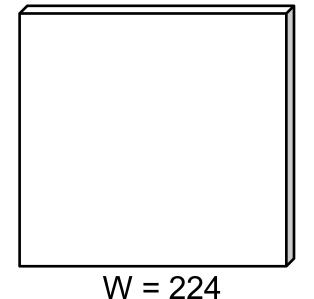
Weight:

C_{out} x C_{in} x T x 3 x 3 Slide over x and y

Output:

C_{out} x H x W 2D grid with C_{out}-dim feat at each point



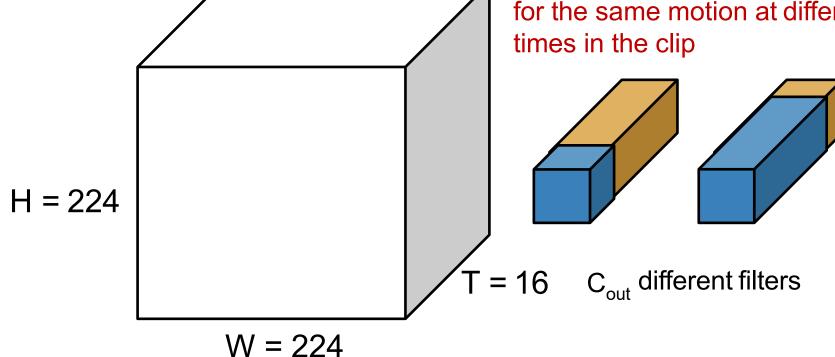


Input: $C_{in} \times T \times H \times W$ (3D grid with C_{in} -dim feat at each point)

Weight:

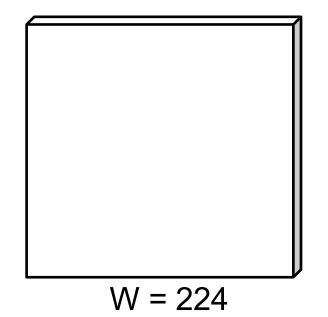
C_{out} x C_{in} x T x 3 x 3 Slide over x and y

No temporal shift-invariance! Needs to learn separate filters for the same motion at different times in the clip



Output:

C_{out} x H x W 2D grid with C_{out}-dim feat at each point



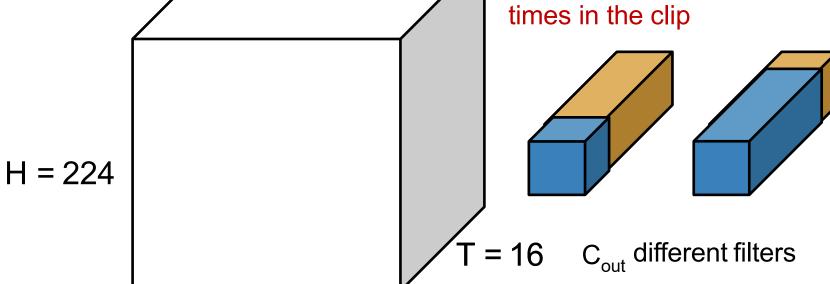
Input: $C_{in} \times T \times H \times W$ (3D grid with C_{in} -dim feat at each point)

W = 224

Weight:

C_{out} x C_{in} x T x 3 x 3 Slide over x and y

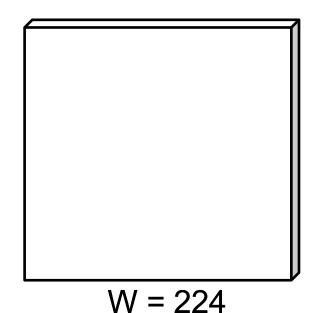
No temporal shift-invariance! Needs to learn separate filters for the same motion at different times in the clip



How to recognize **blue** to **orange** transitions anywhere in space and time?

Output:

C_{out} x H x W 2D grid with C_{out}—dim feat at each point



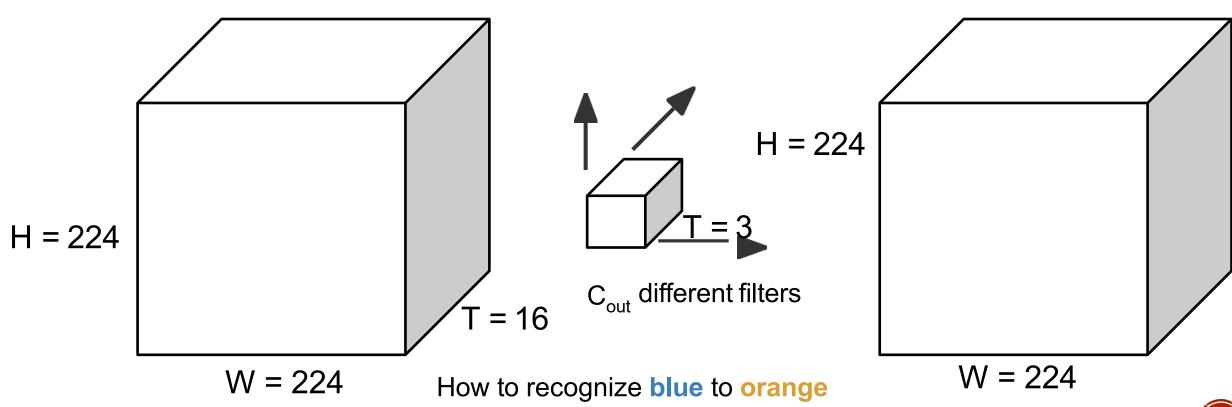
Input: $C_{in} \times T \times H \times W$ (3D grid with C_{in} -dim feat at each point)

Weight:

$$C_{out} \times C_{in} \times 3 \times 3 \times 3$$

Output:

C_{out} x T x H x W
3D grid with C_{out}—dim
feat at each point



transitions anywhere in space and time?

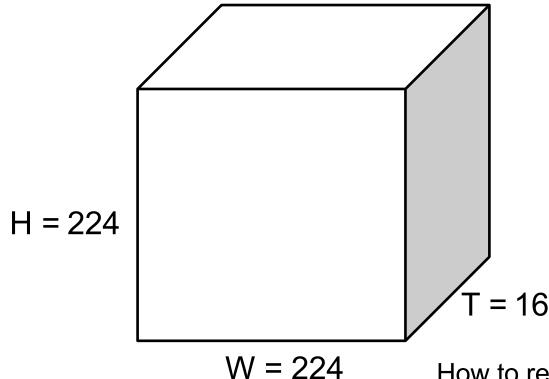
Slide credit: Justin Johnson

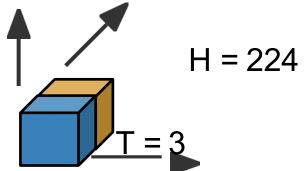
Input: $C_{in} \times T \times H \times W$ (3D grid with C_{in} -dim feat at each point)

Weight:

C_{out} x C_{in} x 3 x 3 x 3 Slide over x, y and t

Temporal shift-invariant since each filter slides over time!



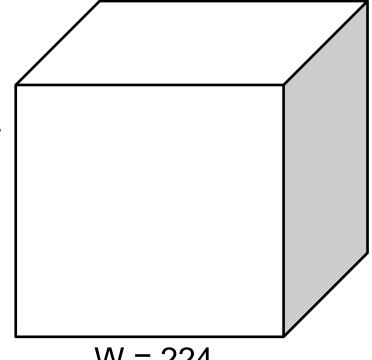


C_{out} different filters

How to recognize **blue** to **orange** transitions anywhere in space and time?

Output:

C_{out} x T x H x W
3D grid with C_{out}—dim
feat at each point



W = 224

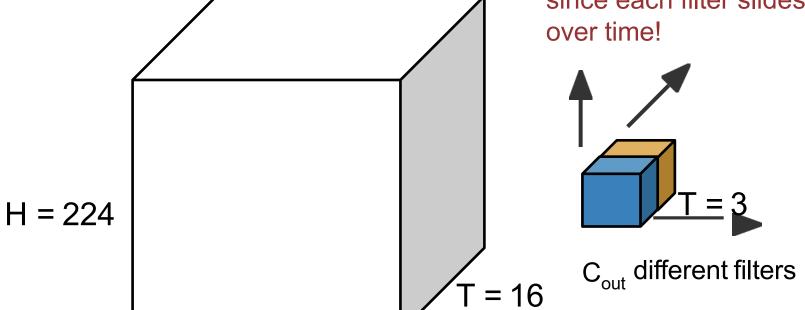
Input: $C_{in} \times T \times H \times W$ (3D grid with C_{in} -dim feat at each point)

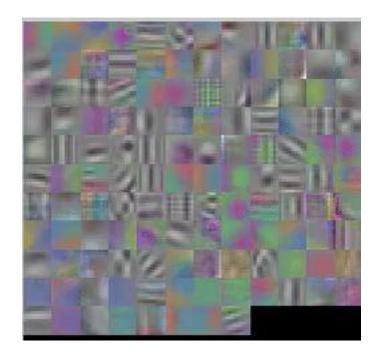
W = 224

Weight:

C_{out} x C_{in} x 3 x 3 x 3 Slide over x, y and t First-layer filters have shape 3 (RGB) x 4 (frames) x 5 x 5 (space)
Can visualize as video clips!

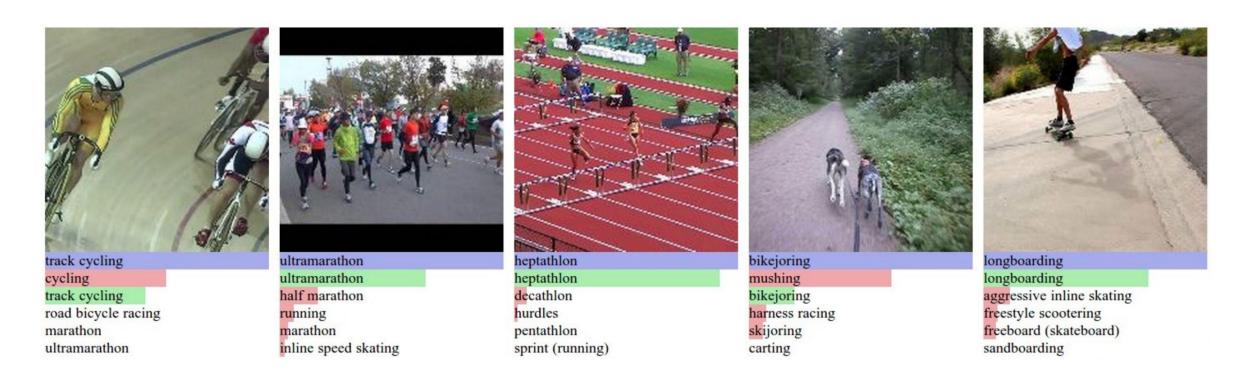
Temporal shift-invariant since each filter slides over time!





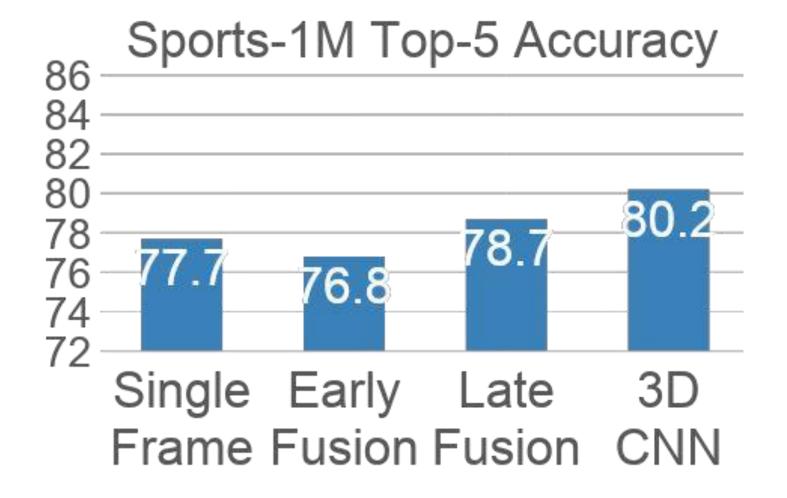
How to recognize **blue** to **orange** transitions anywhere in space and time?

Example Video Dataset: Sports-1M



1 million YouTube videos annotated with labels for 487 different types of sports **Ground Truth Correct prediction Incorrect prediction**

Early Fusion vs Late Fusion vs 3D CNN



Single Frame model works well – always try this first!

3D CNNs have improved a lot since 2014!

C3D: The VGG of 3D CNNs

3D CNN that uses all 3x3x3 conv and 2x2x2 pooling (except Pool1 which is 1x2x2)

Released model pretrained on Sports-1M: Many people used this as a video feature extractor

Layer	Size	
Input	3 x 16 x 112 x 112	
Conv1 (3x3x3)	64 x 16 x 112 x 112	
Pool1 (1x2x2)	64 x 16 x 56 x 56	
Conv2 (3x3x3)	128 x 16 x 56 x 56	
Pool2 (2x2x2)	128 x 8 x 28 x 28	
Conv3a (3x3x3)	256 x 8 x 28 x 28	
Conv3b (3x3x3)	256 x 8 x 28 x 28	
Pool3 (2x2x2)	256 x 4 x 14 x 14	
Conv4a (3x3x3)	512 x 4 x 14 x 14	
Conv4b (3x3x3)	512 x 4 x 14 x 14	
Pool4 (2x2x2)	512 x 2 x 7 x 7	
Conv5a (3x3x3)	512 x 2 x 7 x 7	
Conv5b (3x3x3)	512 x 2 x 7 x 7	
Pool5	512 x 1 x 3 x 3	
FC6	4096	
FC7	4096	
FC8	С	

C3D: The VGG of 3D CNNs

3D CNN that uses all 3x3x3 conv and 2x2x2 pooling (except Pool1 which is 1x2x2)

Released model pretrained on Sports-1M: Many people used this as a video feature extractor

Problem: 3x3x3 conv is very expensive!

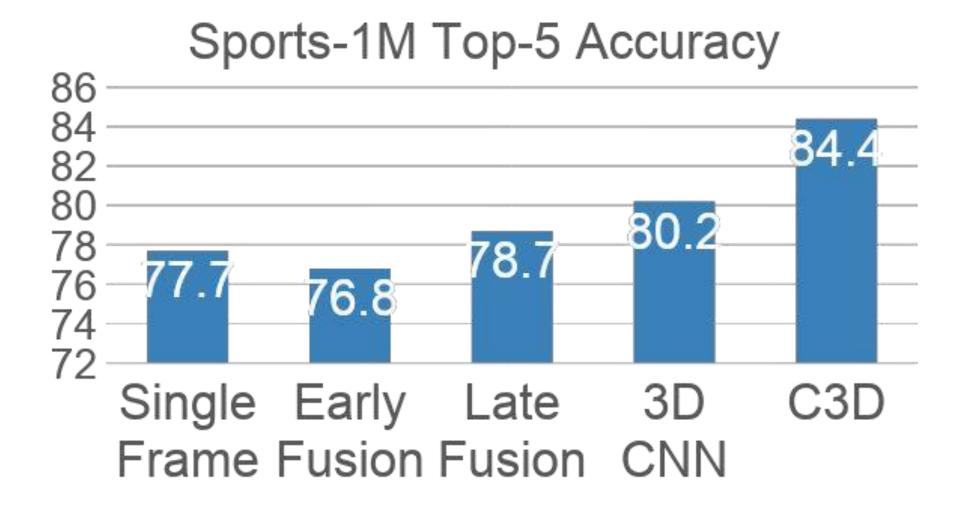
AlexNet: 0.7 GFLOP

VGG-16: 13.6 GFLOP

C3D: 39.5 GFLOP (2.9x VGG!)

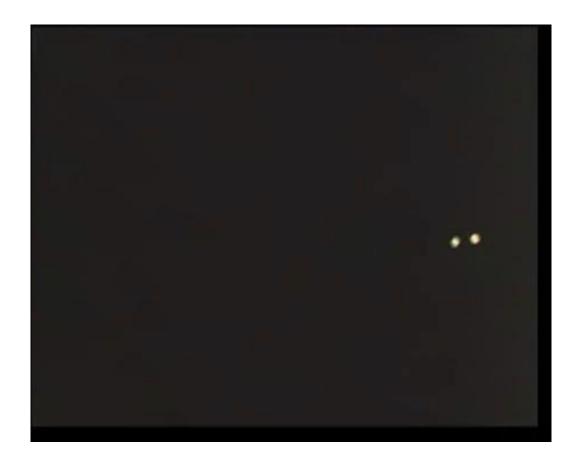
Layer	Size	MFLOPs
Input	3 x 16 x 112 x 112	
Conv1 (3x3x3)	64 x 16 x 112 x 112	1.04
Pool1 (1x2x2)	64 x 16 x 56 x 56	
Conv2 (3x3x3)	128 x 16 x 56 x 56	11.10
Pool2 (2x2x2)	128 x 8 x 28 x 28	
Conv3a (3x3x3)	256 x 8 x 28 x 28	5.55
Conv3b (3x3x3)	256 x 8 x 28 x 28	11.10
Pool3 (2x2x2)	256 x 4 x 14 x 14	
Conv4a (3x3x3)	512 x 4 x 14 x 14	2.77
Conv4b (3x3x3)	512 x 4 x 14 x 14	5.55
Pool4 (2x2x2)	512 x 2 x 7 x 7	
Conv5a (3x3x3)	512 x 2 x 7 x 7	0.69
Conv5b (3x3x3)	512 x 2 x 7 x 7	0.69
Pool5	512 x 1 x 3 x 3	
FC6	4096	0.51
FC7	4096	0.45
FC8	С	0.05

Early Fusion vs Late Fusion vs 3D CNN



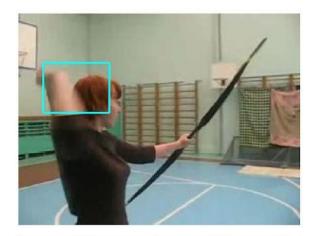
Recognizing Actions from Motion

We can easily recognize actions using only motion information



Measuring Motion: Optical Flow

Image at frame t



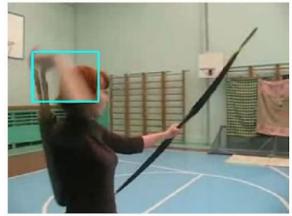
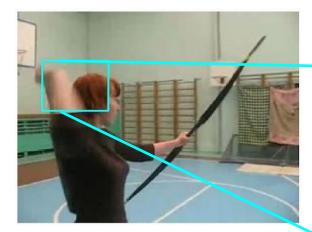


Image at frame t+1

Measuring Motion: Optical Flow

Image at frame t



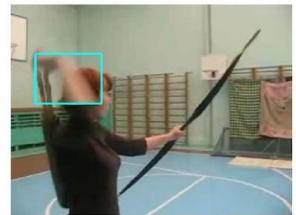
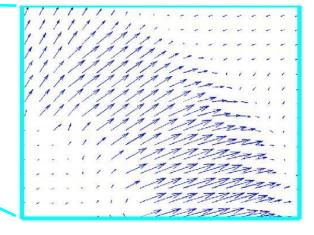


Image at frame t+1

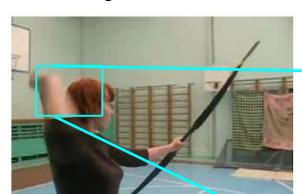
Optical flow gives a displacement field F between images I_t and I_{t+1}



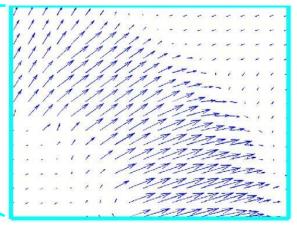
Tells where each pixel will move in the next frame: F(x, y) = (dx, dy) $I_{t+1}(x+dx, y+dy) = I_t(x, y)$

Measuring Motion: Optical Flow

Image at frame t



Optical flow gives a displacement field F between images I_t and I_{t+1}



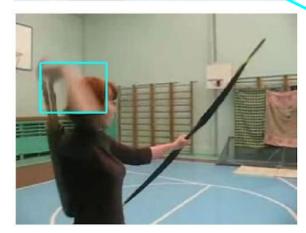


Image at frame t+1

Tells where each pixel will move in the next frame: F(x, y) = (dx, dy) $I_{t+1}(x+dx, y+dy) = I_t(x, y)$

Optical Flow highlights **local motion**

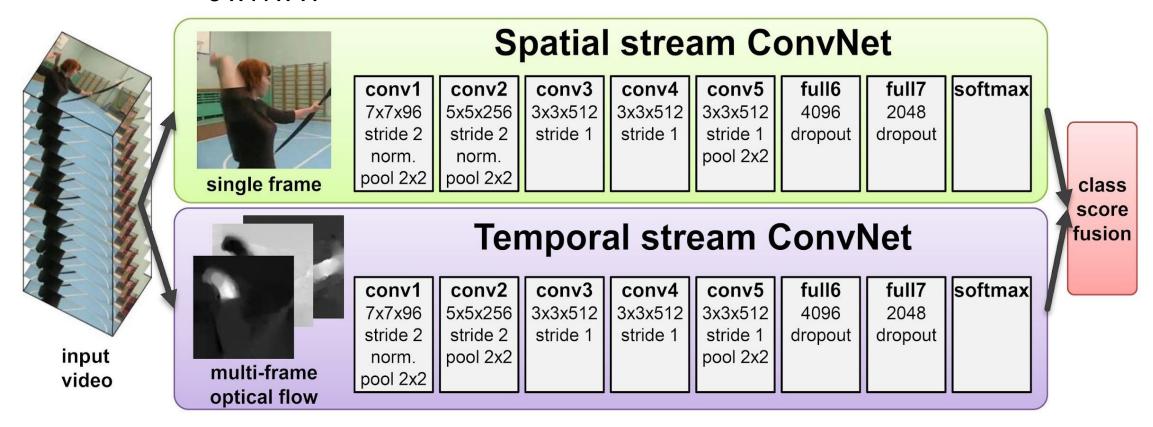
Horizontal flow dx



Vertical Flow dy

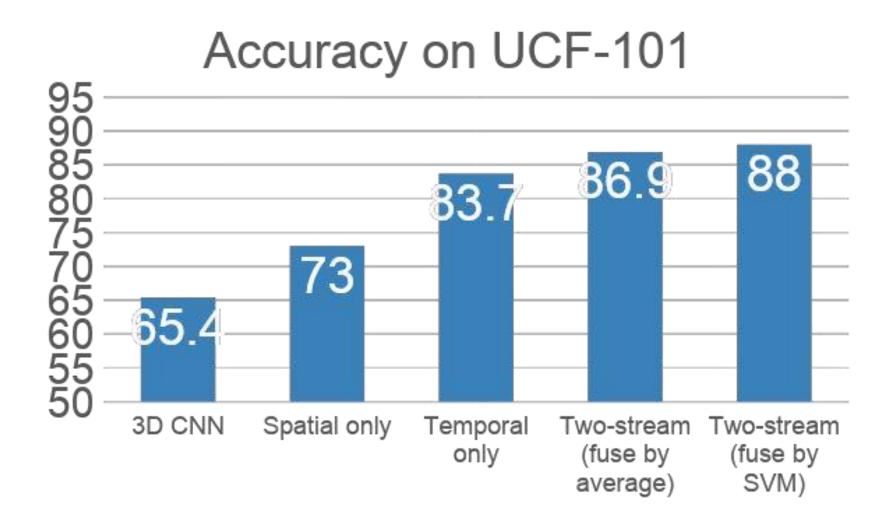
Separating Motion and Appearance: Two-Stream Networks

Input: Single Image 3 x H x W

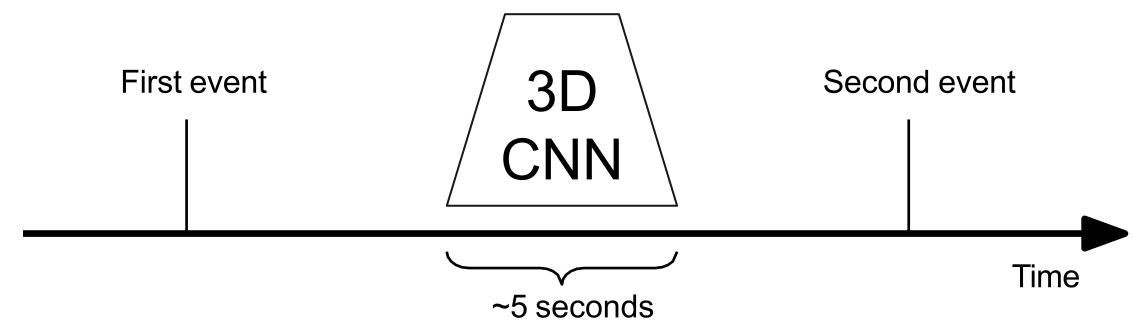


Input: Stack of optical flow: **Early fusion**: First 2D conv [2*(T-1)] x H x W processes all flow images

Separating Motion and Appearance: Two-Stream Networks

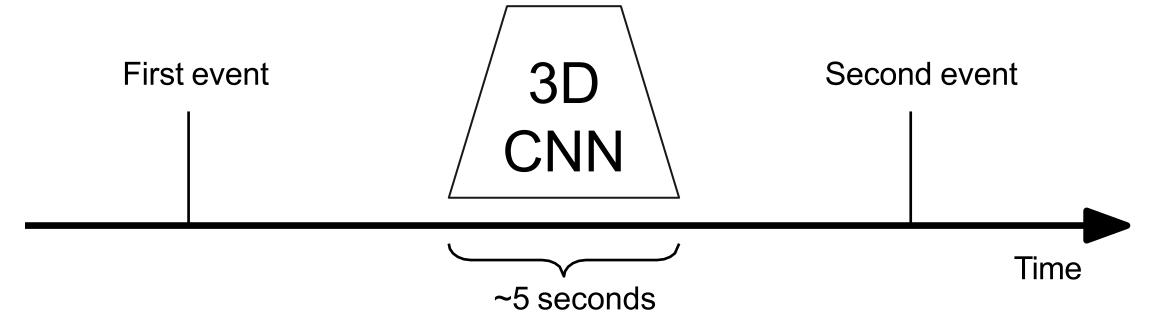


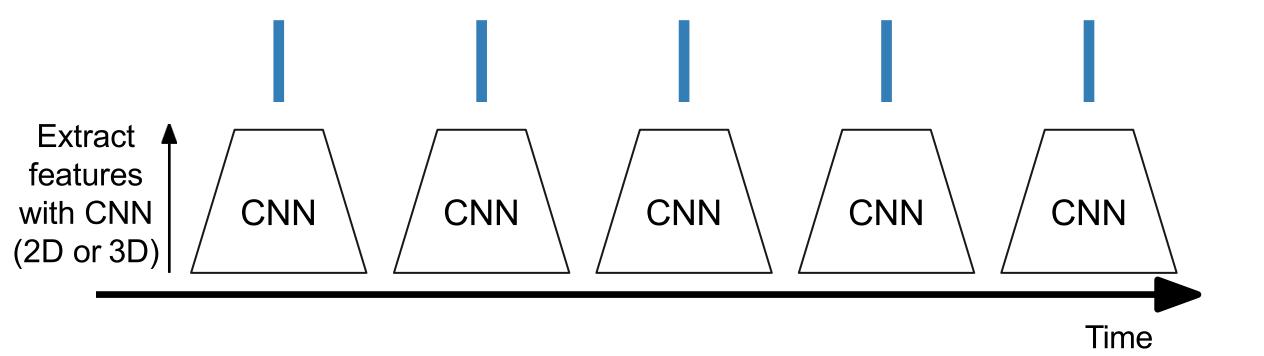
So far all our temporal CNNs only model local motion between frames in very short clips of ~2-5 seconds. What about long-term structure?



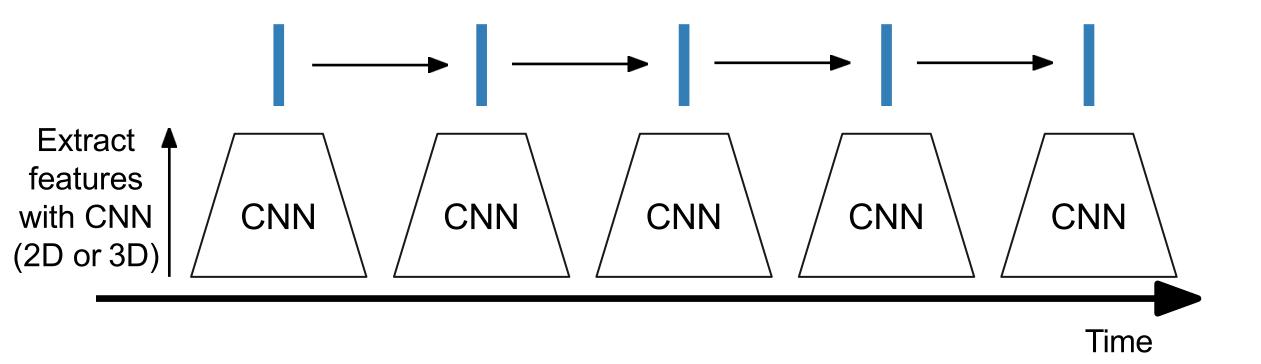
So far all our temporal CNNs only model local motion between frames in very short clips of ~2-5 seconds. What about long-term structure?

We know how to handle sequences! How about recurrent networks?

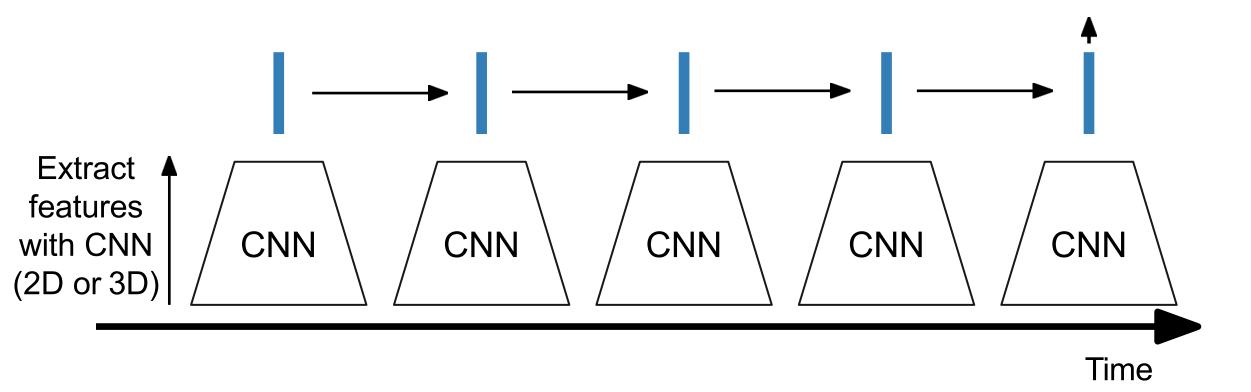




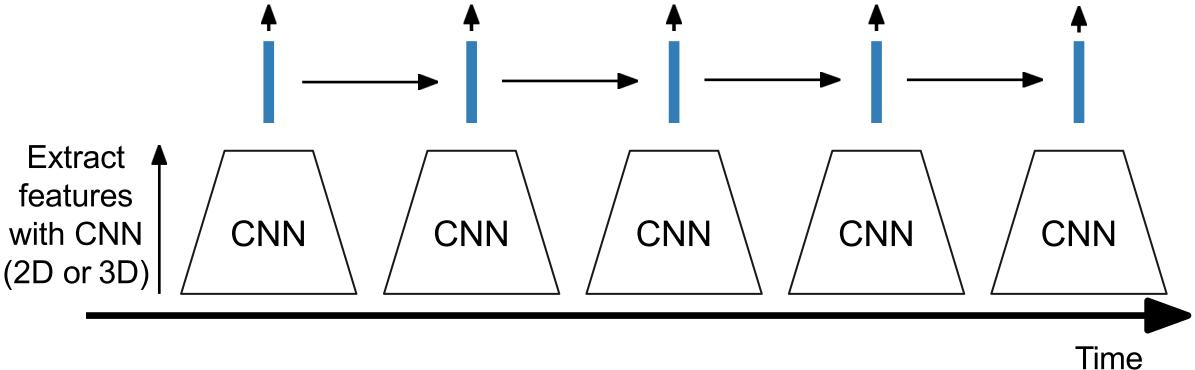
Process local features using recurrent network (e.g. LSTM)



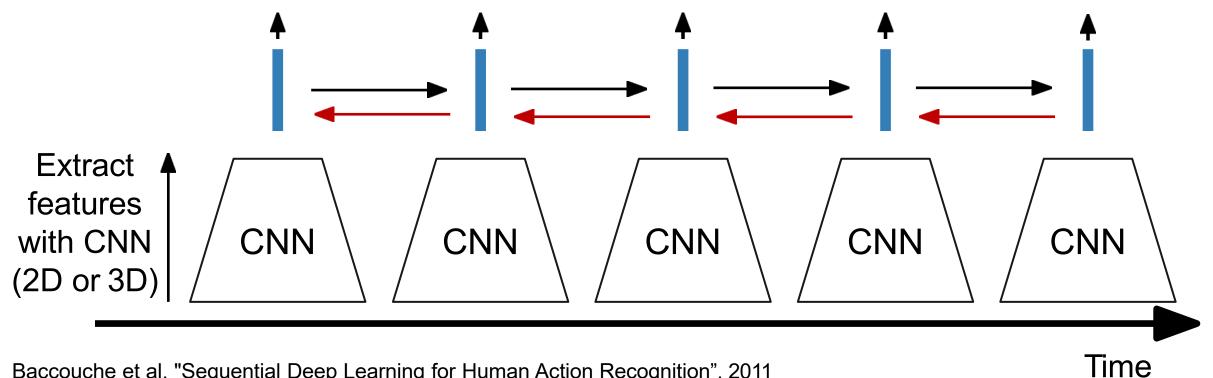
Process local features using recurrent network (e.g. LSTM) Many to one: One output at end of video



Process local features using recurrent network (e.g. LSTM) Many to many: one output per video frame

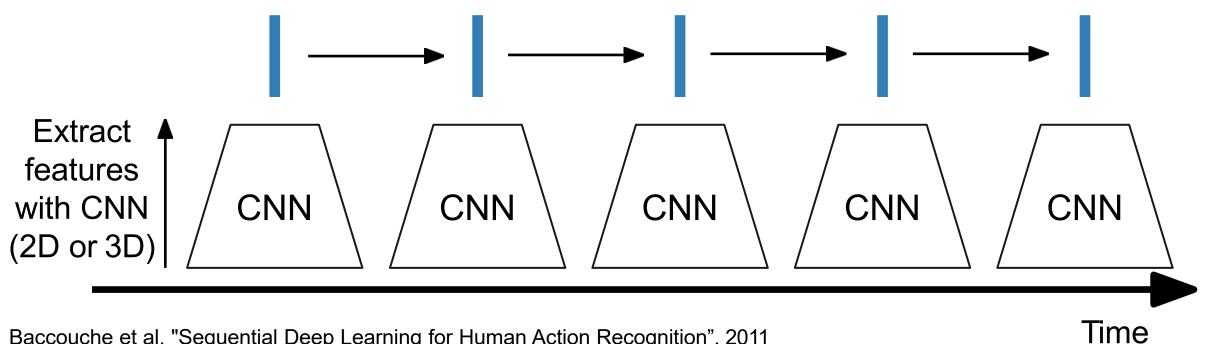


Sometimes don't backprop to CNN to save memory; pretrain and use it as a feature extractor



Baccouche et al, "Sequential Deep Learning for Human Action Recognition", 2011 Donahue et al, "Long-term recurrent convolutional networks for visual recognition and description", CVPR 2015

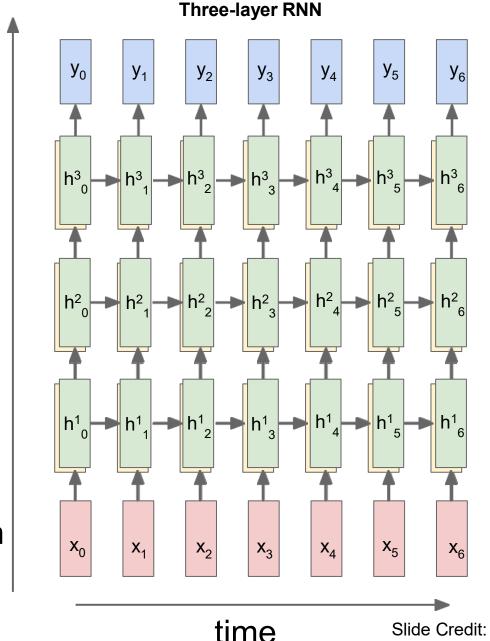
Inside CNN: Each value is a function of a fixed temporal window (local temporal structure)
Inside RNN: Each vector is a function of all previous vectors (global temporal structure)
Can we merge both approaches?



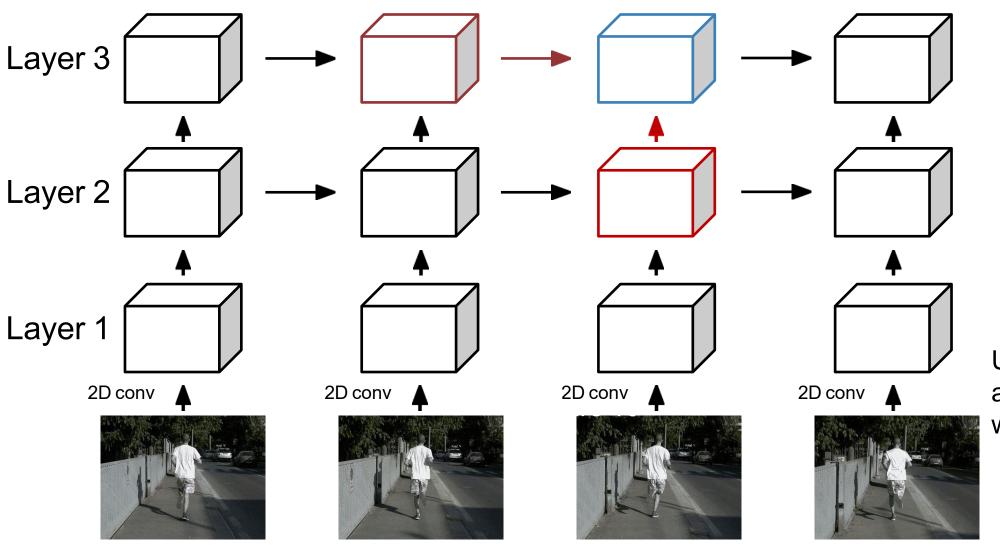
Baccouche et al, "Sequential Deep Learning for Human Action Recognition", 2011 Donahue et al, "Long-term recurrent convolutional networks for visual recognition and description", CVPR 2015

Recall: Multi-layer RNN

We can use a similar structure to process videos!



depth

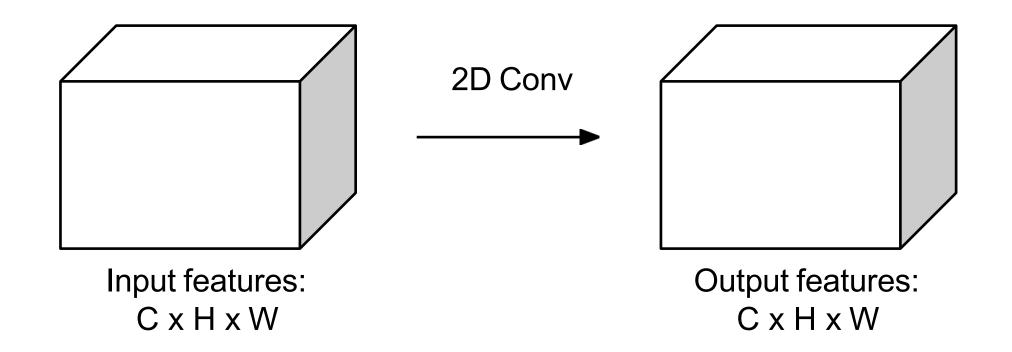


Entire network uses 2D feature maps: C x H x W

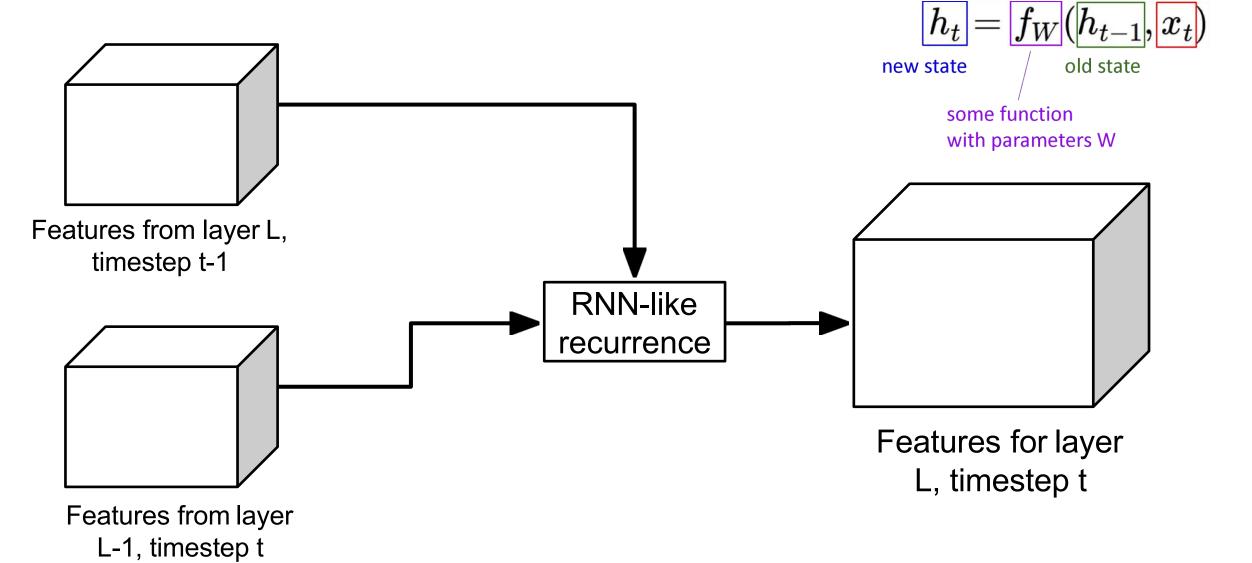
Each depends
on two inputs:
1.Same layer,
previous
timestep
2.Prev layer,
same timestep

Use different weights at each layer, share weights across time

Normal 2D CNN:



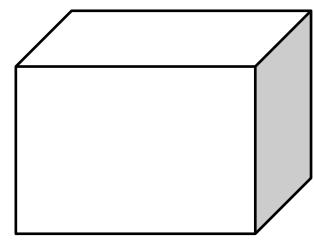
Recall: Recurrent Network



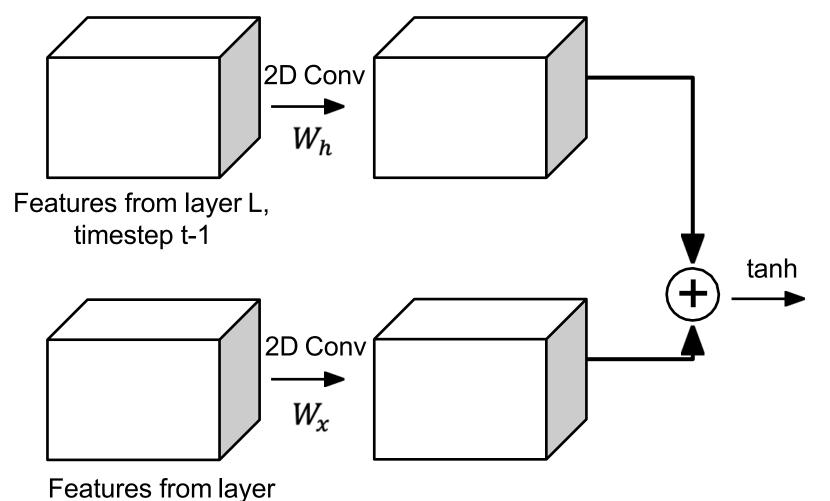
Recall: Vanilla RNN

$$h_{t+1} = \tanh(W_h h_t + W_x x)$$

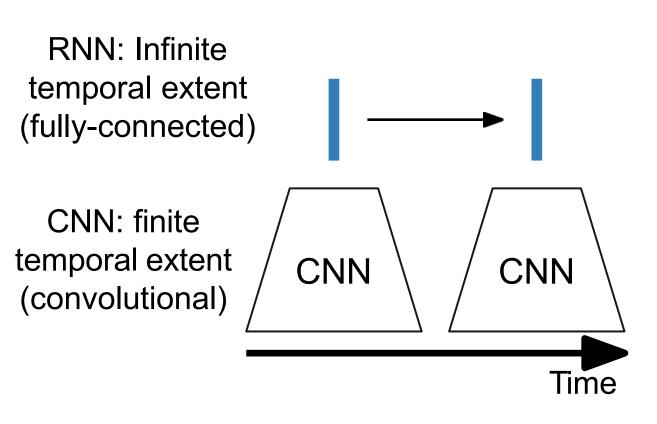
Replace all matrix multiply with 2D convolution!

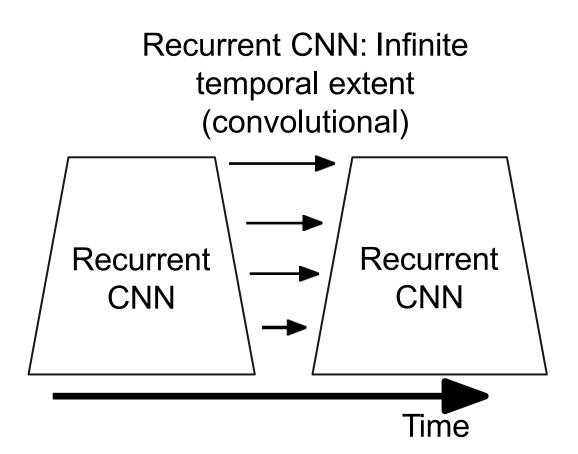


Features for layer L, timestep t



L-1, timestep t





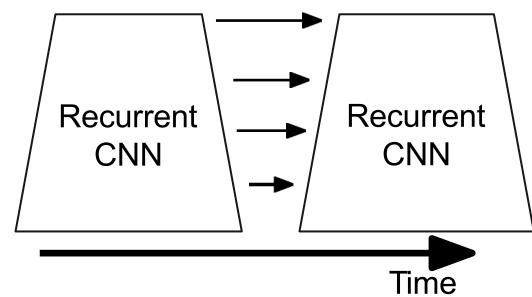
Baccouche et al, "Sequential Deep Learning for Human Action Recognition", 2011 Donahue et al, "Long-term recurrent convolutional networks for visual recognition and description", CVPR 2015

Ballas et al, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016

Slide credit: Justin Johnson

Problem: RNNs are slow for long sequences (can't be parallelized)

RNN: Infinite temporal extent (fully-connected) CNN: finite temporal extent **CNN CNN** (convolutional) Time Recurrent CNN: Infinite temporal extent (convolutional)

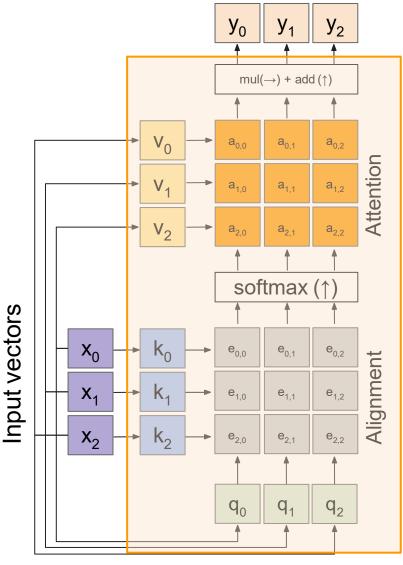


Baccouche et al, "Sequential Deep Learning for Human Action Recognition", 2011 Donahue et al, "Long-term recurrent convolutional networks for visual recognition and description", CVPR 2015

Ballas et al, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016

Slide credit: Justin Johnson

Recall: Self-Attention



Outputs:

context vectors: **y** (shape: D_v)

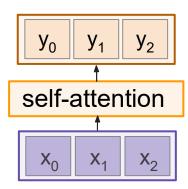
Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{q}}$ Query vectors: $\mathbf{q} = \mathbf{x} \mathbf{W}_{\mathbf{q}}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_j \cdot \mathbf{k}_i / \sqrt{D}$ Attention: $\mathbf{a} = \operatorname{softmax}(\mathbf{e})$

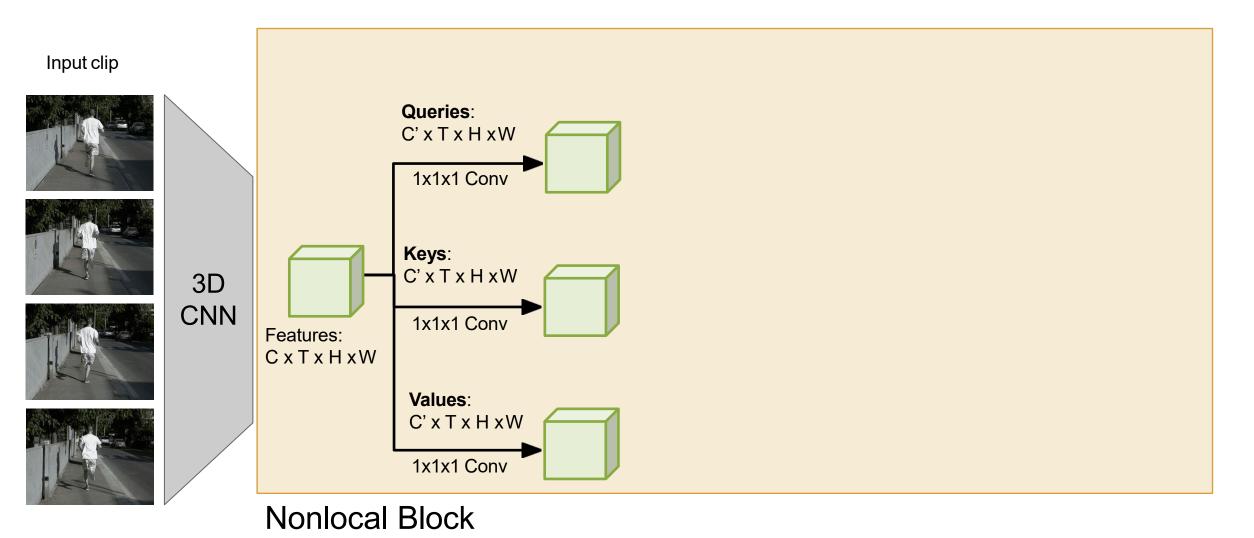
Output: $y_i = \sum_i a_{i,j} v_i$

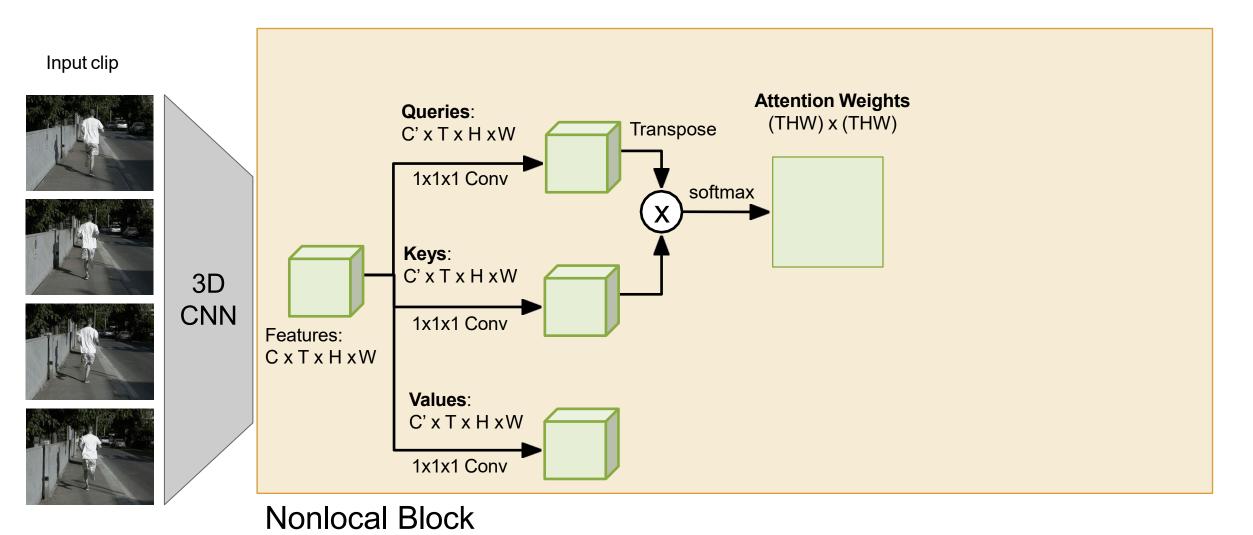
Inputs:

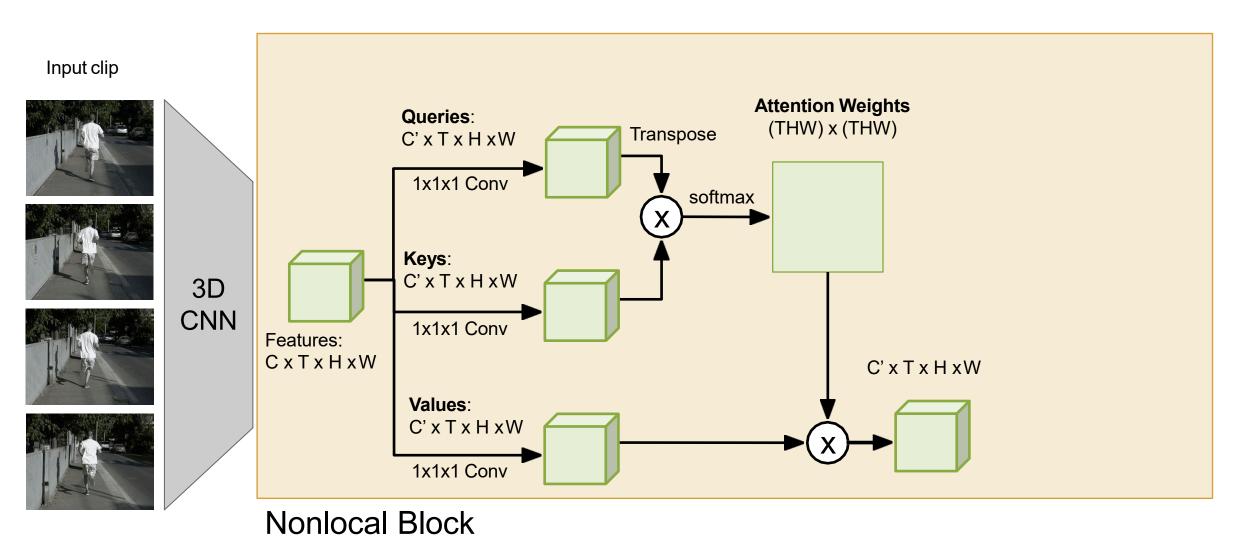
Input vectors: **x** (shape: N x D)

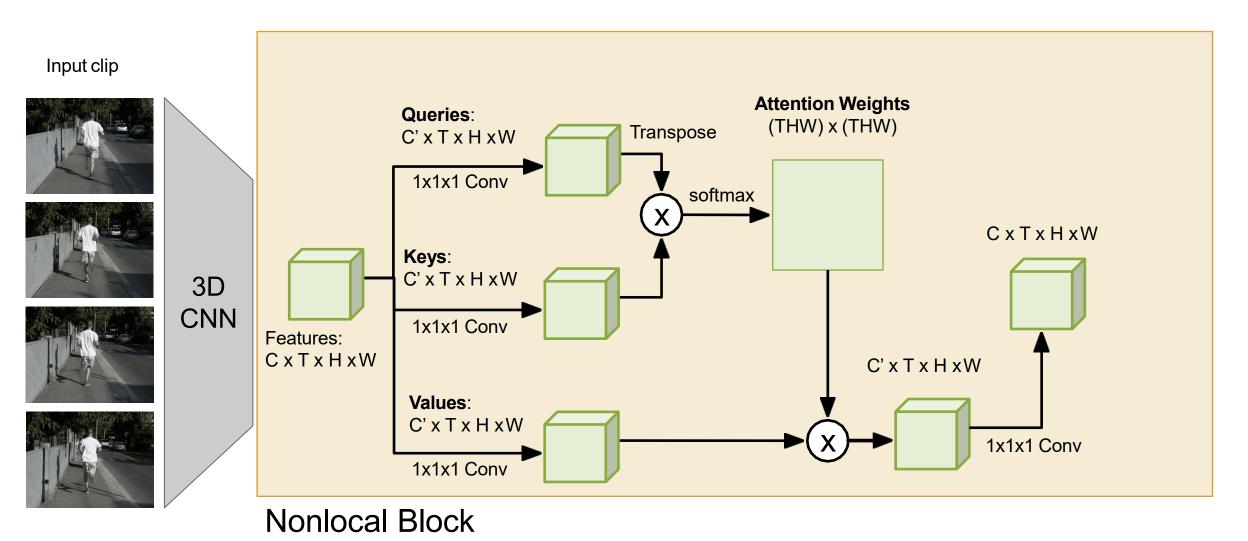


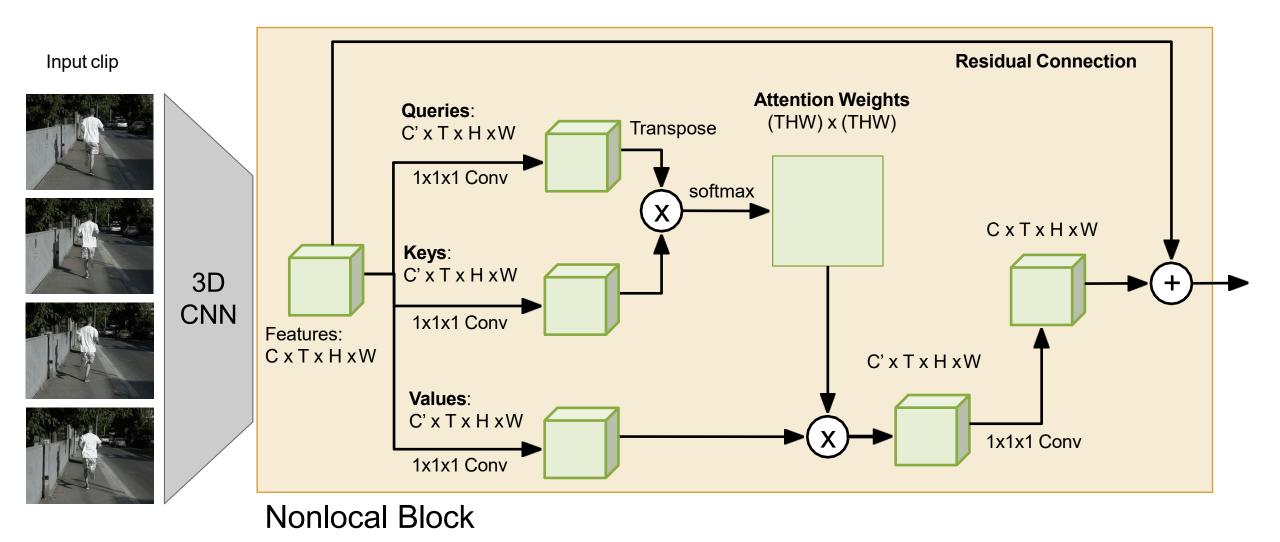








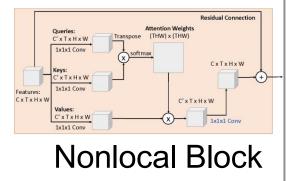


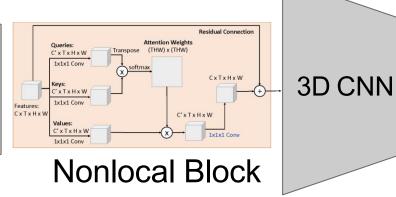


We can add nonlocal blocks into existing 3D CNN architectures. But what is the best 3D CNN architecture?

3D CNN

Input clip





Running

3D CNN

Inflating 2D Networks to 3D (I3D)

We can add nonlocal blocks into existing 3D CNN architectures. But what is the best 3D CNN architecture?

Idea: take a 2D CNN architecture.

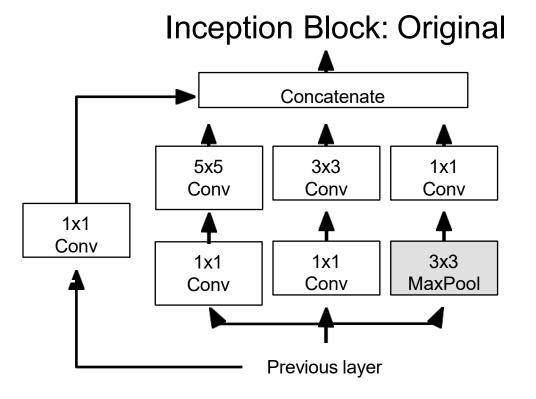
Replace each 2D $K_h x K_w conv/pool$ layer with a 3D $K_t x K_h x K_w version$

Inflating 2D Networks to 3D (I3D)

We can add nonlocal blocks into existing 3D CNN architectures. But what is the best 3D CNN architecture?

Idea: take a 2D CNN architecture.

Replace each 2D K_h x K_w conv/pool layer with a 3D K_t x K_h x K_w version

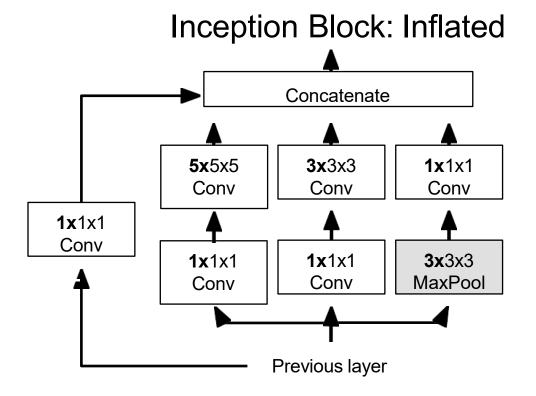


Inflating 2D Networks to 3D (I3D)

We can add nonlocal blocks into existing 3D CNN architectures. But what is the best 3D CNN architecture?

Idea: take a 2D CNN architecture.

Replace each 2D K_h x K_w conv/pool layer with a 3D K_t x K_h x K_w version



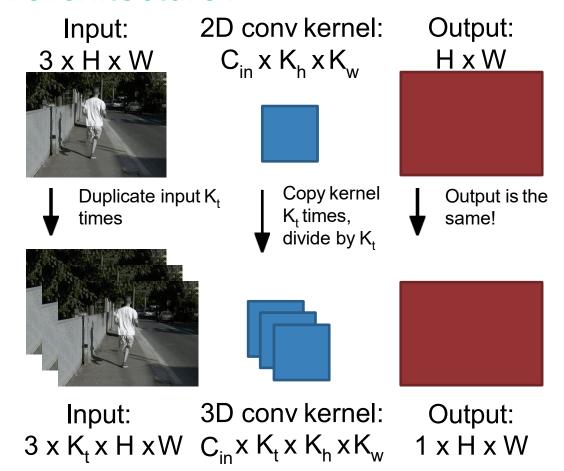
Inflating 2D Networks to 3D (I3D)

We can add nonlocal blocks into existing 3D CNN architectures. But what is the best 3D CNN architecture?

Idea: take a 2D CNN architecture.

Replace each 2D $K_h x K_w conv/pool$ layer with a 3D $K_t x K_h x K_w version$

Can use weights of 2D conv to initialize 3D conv: copy K_t times in space and divide by K_t
This gives the same result as 2D conv given "constant" video input



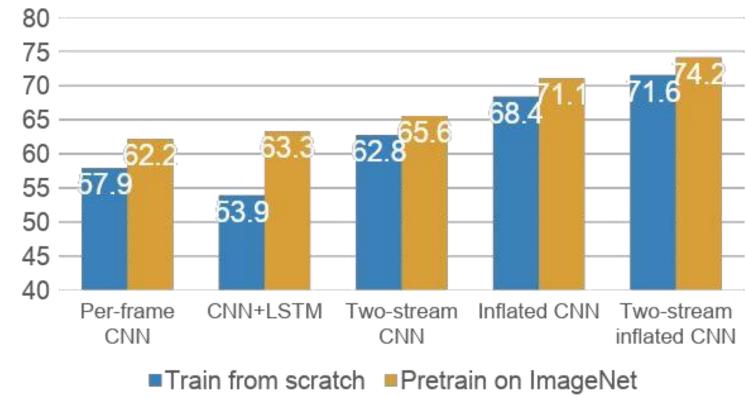
Inflating 2D Networks to 3D (I3D)

We can add nonlocal blocks into existing 3D CNN architectures. But what is the best 3D CNN architecture?

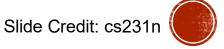
Idea: take a 2D CNN architecture.

Replace each 2D $K_h x K_w conv/pool$ layer with a 3D $K_t x K_h x K_w version$

Can use weights of 2D conv to initialize 3D conv: copy K_t times in space and divide by K_t
This gives the same result as 2D conv given "constant" video input

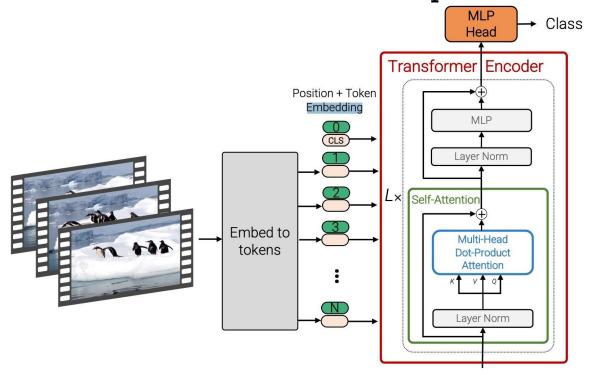


All using Inception CNN



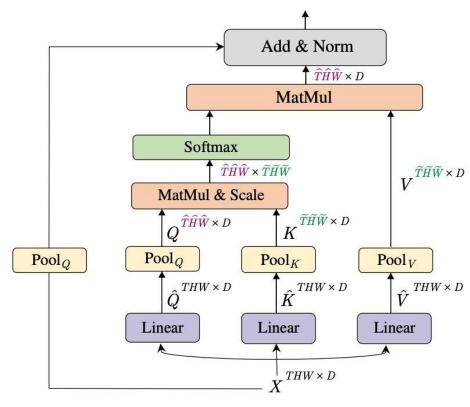
Vision Transformers for Video

Factorized attention: Attend over space / time



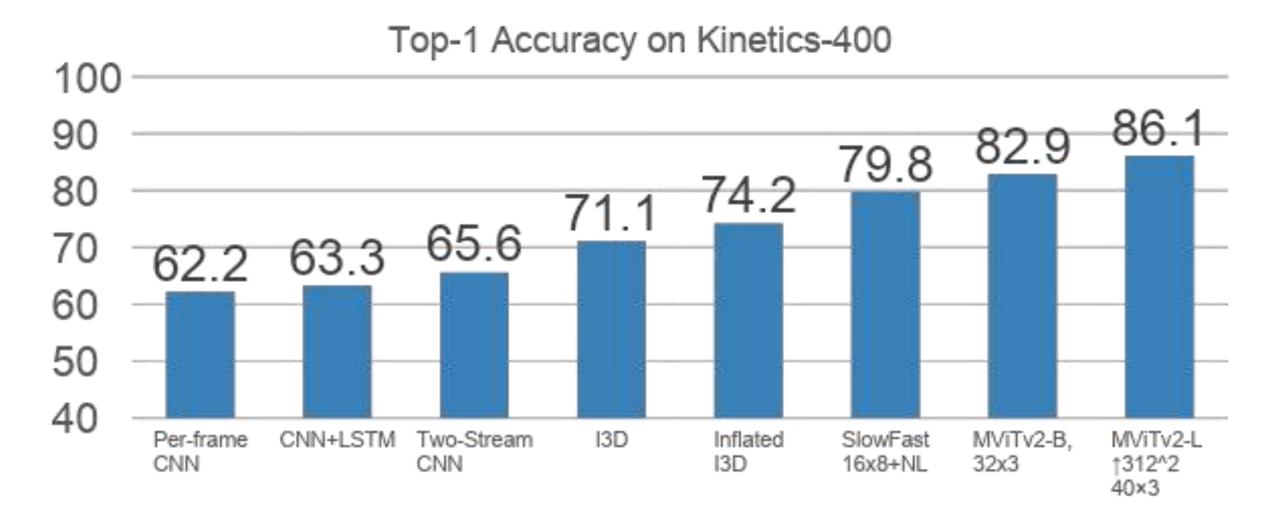
Bertasius et al, "Is Space-Time Attention All You Need for Video Understanding?", ICML 2021 Arnab et al, "ViViT: A Video Vision Transformer", ICCV 2021 Neimark et al, "Video Transformer Network", ICCV 2021

Pooling module: Reduce number of tokens



Fan et al, "Multiscale Vision Transformers", ICCV 2021 Li et al, "MViTv2: Improved Multiscale Vision Transformers for Classification and Detection", CVPR 2022

Vision Transformers for Video



So Far: Classify Short Clips

Videos: Recognize actions

Swimming
Running
Jumping
Eating
Standing

Temporal Action Localization

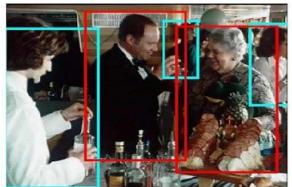
Given a long untrimmed video sequence, identify frames corresponding to different actions

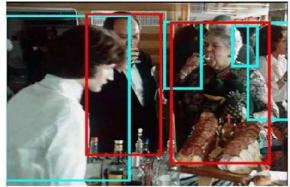
Can use architecture similar to Faster R-CNN: first generate **temporal proposals** then **classify**

Spatio-Temporal Detection

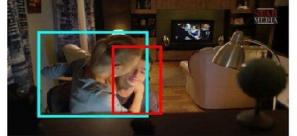
Given a long untrimmed video, detect all the people in both space and time and classify the activities they are performing.

Some examples from AVA Dataset:





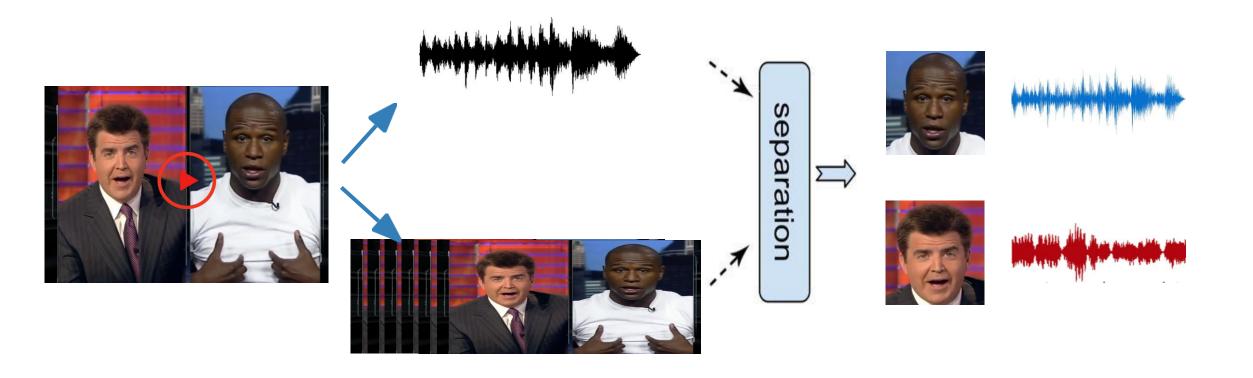
clink glass → drink



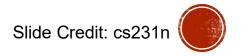
grab (a person) → hug

look at phone → answer phone

Visually-guided Audio Source Separation

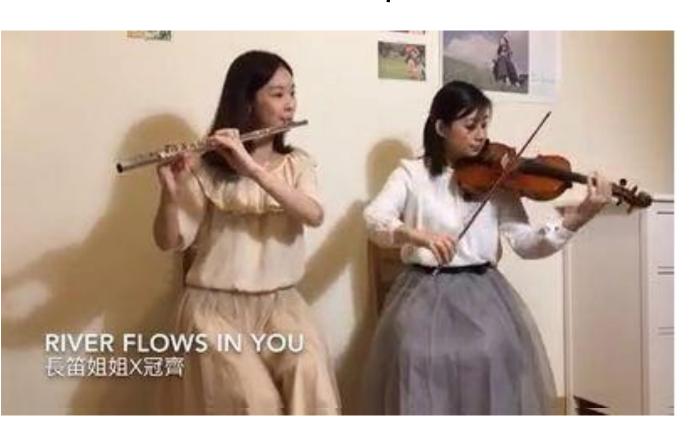


[Gao et al. ECCV 2018, Afouras et al. Interspeech'18, Gabby et al. Interspeech'18, Owens & Efros ECCV'18, Ephrat et al. SIGGRAPH'18, Zhao et al. ECCV 2018, Gao & Grauman ICCV 2019, Zhao et al. ICCV 2019, Xu et al. ICCV 2019, Gan et al. CVPR 2020, Gao et al. CVPR 2021]



Musical Instruments Source Separation

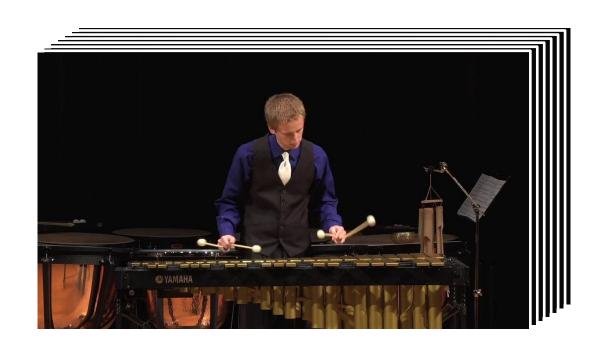
Train on 100,000 unlabeled multi-source video clips, then separate audio for novel video.

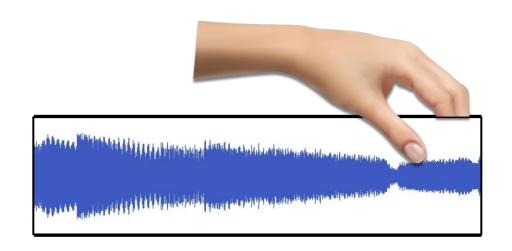


original video (before separation)

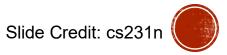
object detections: violin & flute

Learning Audio-Visual Synchronization

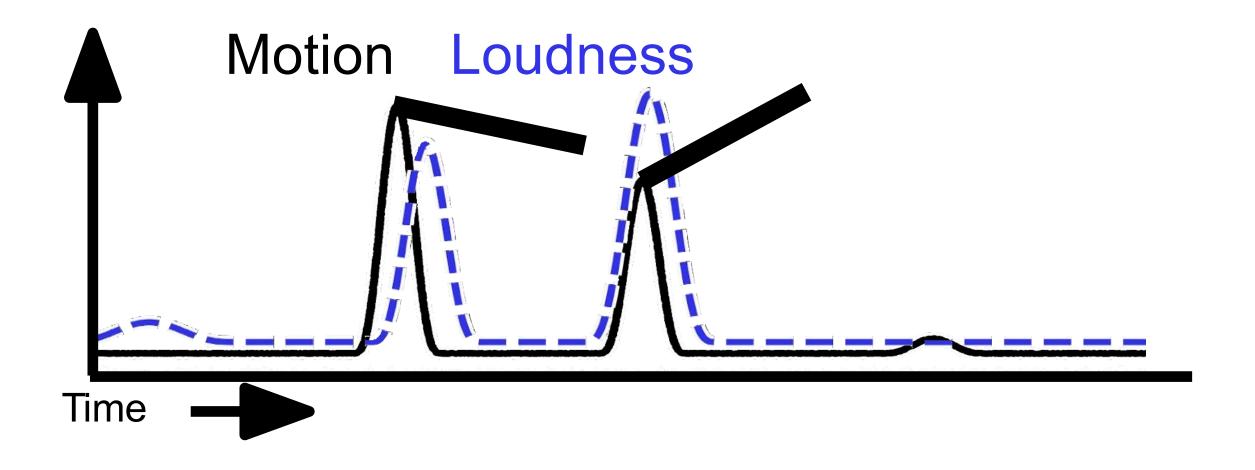




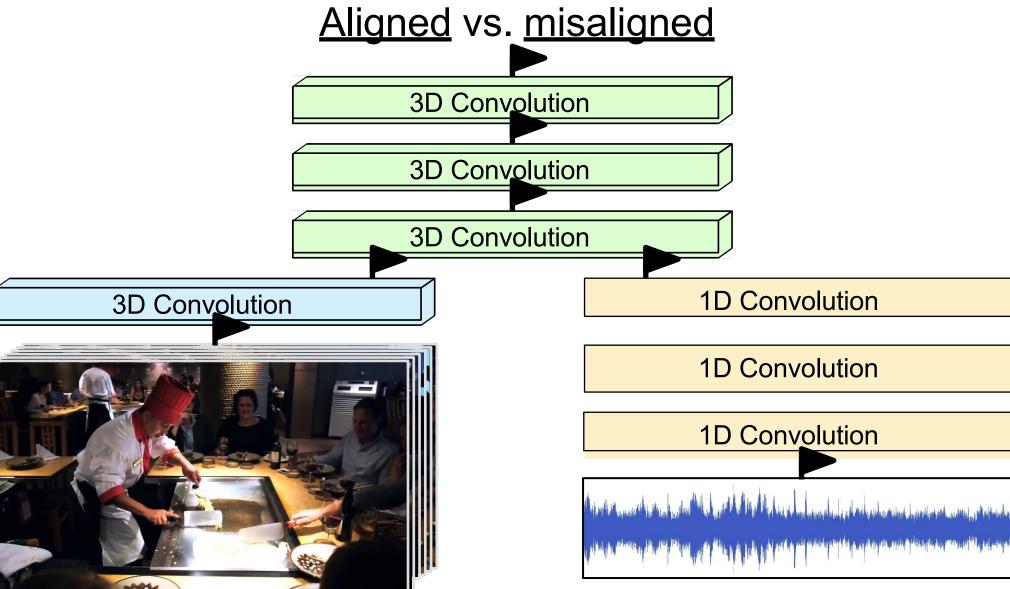
Owens & Efros, Audio-visual scene analysis with self-supervised multisensory features, ECCV 2018 Korbar et al., Co-training of audio and video representations from self-supervised temporal synchronization, NeurlPS 2018



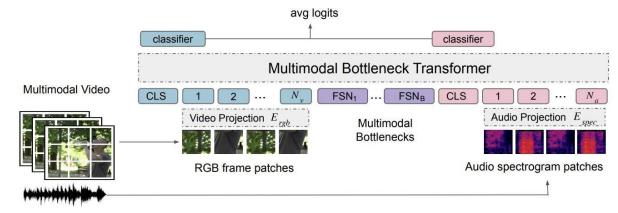
Learning Audio-Visual Synchronization



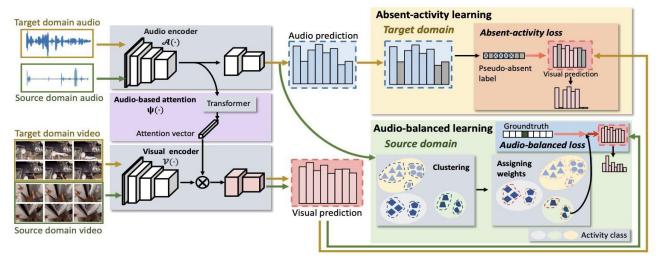
Learning Audio-Visual Synchronization



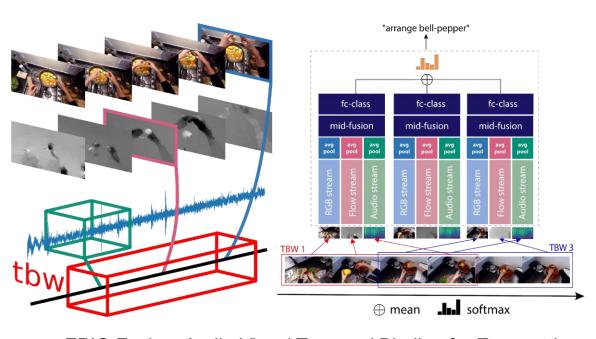
Multimodal Video Understanding



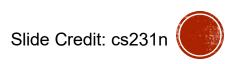
Attention Bottlenecks for Multimodal Fusion, Nagrani et al. NeurIPS 2021



Audio-Adaptive Activity Recognition Across Video Domains, Yunhua et al. CVPR 2022



EPIC-Fusion: Audio-Visual Temporal Binding for Egocentric Action Recognition, Kazakos et al., ICCV 2019



ACKNOWLEDGEMENT

Thanks to the following courses and corresponding researchers for making their teaching/research material online

- CS231n: Deep Learning for Computer Vision, Stanford University
- Convolutional Neural Networks for Visual Recognition, Stanford University
- Deep Learning, Stanford University
- Introduction to Deep Learning, University of Illinois at Urbana-Champaign
- Introduction to Deep Learning, Carnegie Mellon University
- Natural Language Processing with Deep Learning, Stanford University
- And Many More Publicly Available Resources

Questions?

