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(assume given a set of possible labels)

{dog, cat, truck, plane, ...}

cat

This image by Nikita is  licensed under 

CC-BY 2.0

Recall: (2D) Image Classification

Slide Credit: cs231n

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/


Recall: (2D) Detection And Segmentation

Classification
Semantic  

Segmentation
Object  

Detection

Instance  

Segmentation

CAT GRASS, CAT,  

TREE, SKY
DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels This image is CC0 public domain

Slide Credit: cs231n

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en


This image is CC0 public domain

A video is a sequence of images  

4D tensor: T x 3 x H x W

(or 3 x T x H x W)

…

9

…

Today: Video = 2D + Time

Slide Credit: cs231n

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Input video:  

T x 3 x H x W

Swimming  

Running  

Jumping  

Eating  

Standing

Slide credit: Justin Johnson

Running video is in the public domain

Example Task: Video Classification



Swimming  
Videos: Recognize actions Running

Jumping  

Eating  

Standing

Dog

Cat

Fish

Truck

Running video is in the public domain

Images: Recognize objects

Slide credit: Justin Johnson

Example Task: Video Classification



Input video:  

T x 3 x H x W

Videos are ~30 frames per second (fps)

Size of uncompressed video  

(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute

HD (1920 x 1080): ~10 GB per minute

Slide credit: Justin Johnson

Problem: Videos are big!



Input video:  

T x 3 x H x W

Videos are ~30 frames per second (fps)

Size of uncompressed video  

(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute

HD (1920 x 1080): ~10 GB per minute

Solution: 

Train on short clips: low fps and low spatial resolution

e.g. T = 16 (3.2 seconds at 5 fps), H=W=112

~588 KB
Slide credit: Justin Johnson

Problem: Videos are big!



Raw video: Long, high FPS

Slide credit: Justin Johnson

Training on Clips



Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS

Slide credit: Justin Johnson

Training on Clips



Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS

Testing: Run model on different clips, average predictions

Slide credit: Justin Johnson

Training on Clips



Simple idea: train normal 2D CNN to classify video frames independently!  

(Average predicted probs at test-time)

Often a very strong baseline for video classification

“Running” “Running” “Running” “Running” “Running” “Running”

CNN CNN CNN CNN CNN CNN CNN

“Running”

Slide credit: Justin Johnson

Video Classification: Single-Frame CNN



CNN CNN CNN CNN CNN CNN

Frame features  

T x D x H’ x W’

2D CNN

on each  

frame

Flatten

MLP

Class scores: C

Input:

T x 3 x H x W

Run 2D CNN on each  

frame, concatenate  

features and feed to MLP
Clip features:  

TDH’W’

Intuition: Get high-level  

appearance of each frame, and  

combine them

Slide credit: Justin Johnson

Video Classification: Late Fusion (with FC layers)

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014



CNN CNN CNN CNN CNN CNN2D CNN

on each  

frame

Frame features  

T x D x H’ x W’

Average Pool over space and time

Clip features: D
Linear

Class scores: C

Input:

T x 3 x H x W

Run 2D CNN on  each 

frame, pool  features 

and feed  to Linear

Intuition: Get high-level  

appearance of each frame, and  

combine them

Slide credit: Justin Johnson

Video Classification: Late Fusion (with pooling)



CNN CNN CNN CNN CNN CNN2D CNN

on each  

frame

Frame features  

T x D x H’ x W’

Average Pool over space and time

Clip features: D
Linear

Class scores: C

Input:

T x 3 x H x W

Run 2D CNN on  each 

frame, pool  features 

and feed  to Linear

Intuition: Get high-level  

appearance of each frame, and  

combine them

Slide credit: Justin Johnson

Video Classification: Late Fusion (with pooling)

Problem: Hard to compare

low-level motion between frames



2D CNN
Reshape:  

3T x H x W

Class scores: C

Rest of the  

network is  

standard 2D CNN

Intuition: Compare frames  

with very first conv layer,

after that normal 2D CNN

First 2D convolution  

collapses all temporal  

information:

Input: 3T x H x W

Output: D x H x W

Input:

T x 3 x H x W

Slide credit: Justin JohnsonKarpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Video Classification: Early Fusion



2D CNN
Reshape:  

3T x H x W

Class scores: C

Rest of the  

network is  

standard 2D CNN

Intuition: Compare frames  

with very first conv layer,

after that normal 2D CNN

First 2D convolution  

collapses all temporal  

information:

Input: 3T x H x W

Output: D x H x W

Input:

T x 3 x H x W

Slide credit: Justin JohnsonKarpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Video Classification: Early Fusion

Problem: One layer of  temporal processing may not  be enough!



3D CNN

Class scores: C

Intuition: Use 3D versions of  

convolution and pooling to  

slowly fuse temporal

information over the course of  

the network

Each layer in the network is a  

4D tensor: D x T x H x W  

Use 3D conv and 3D pooling  

operations

Input:

3 x T x H x W

Slide credit: Justin Johnson

Video Classification: 3D CNN

Ji et al, “3D Convolutional Neural Networks for Human Action Recognition”, TPAMI 2010

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014



32

3

32x32x3 image  

5x5x3 filter
32

convolve (slide) over all  

spatial locations

activation map

1

28

28

Convolution Layer

Slide Credit: cs231n



Class  

Scores

Fei-Fei Li, Yunzhu Li, Ruohan Gao FC

Layer

Input:

C x T x H x W

6x6x6 conv 5x5x5 conv 4x4x4 conv

3D Convolution

Slide Credit: cs231n



Layer
Size
(C x T x H x W)

Receptive Field  

(T x H x W)
Input 3 x 20 x 64 x 64

Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3

Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6

Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14

GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

(Small example  

architectures, in  

practice much  

bigger)

Slide credit: Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

Late  

Fusion



Layer
Size
(C x T x H x W)

Receptive Field  

(T x H x W)
Input 3 x 20 x 64 x 64

Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3

Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6

Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14

GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Conv(3x3)

Input

Slide credit: Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

(Small example  

architectures, in  

practice much  

bigger)

Late  

Fusion



Layer
Size
(C x T x H x W)

Receptive Field  

(T x H x W)
Input 3 x 20 x 64 x 64

Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3

Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6

Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14

GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Pool(4x4)

Conv(3x3)

Input

Slide credit: Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

(Small example  

architectures, in  

practice much  

bigger)

Late  

Fusion



Layer
Size
(C x T x H x W)

Receptive Field  

(T x H x W)
Input 3 x 20 x 64 x 64

Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3

Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6

Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14

GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Conv(3x3)

Pool(4x4)

Conv(3x3)

Input

Build slowly in space

Slide credit: Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

(Small example  

architectures, in  

practice much  

bigger)

Late  

Fusion



Layer
Size
(C x T x H x W)

Receptive Field  

(T x H x W)
Input 3 x 20 x 64 x 64

Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3

Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6

Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14

GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Input

30

GlobalAvg

Conv(3x3)

Pool(4x4)

Conv(3x3)

Build slowly in space,

All-at-once in time at end

Slide credit: Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

(Small example  

architectures, in  

practice much  

bigger)

Late  

Fusion



Layer
Size
(C x T x H x W)

Receptive Field  

(T x H x W)
Input 3 x 20 x 64 x 64

Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3

Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6

Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14

GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64

Conv2D(3x3, 3*20->12) 12 x 64 x 64 20 x 3 x 3

Pool2D(4x4) 12 x 16 x 16 20 x 6 x 6

Conv2D(3x3, 12->24) 24 x 16 x 16 20 x 14 x 14

GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Late  

Fusion

Early  

Fusion

Build slowly in space,

All-at-once in time at end

Build slowly in space,

All-at-once in time at start

Slide credit: Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

(Small example  

architectures, in  

practice much  

bigger)



Late  

Fusion

Early  

Fusion

Build slowly in space,

All-at-once in time at end

Build slowly in space,

All-at-once in time at start

Slide credit: Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

Layer
Size
(C x T x H x W)

Receptive Field  

(T x H x W)
Input 3 x 20 x 64 x 64

Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3

Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6

Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14

GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64

Conv2D(3x3, 3*20->12) 12 x 64 x 64 20 x 3 x 3

Pool2D(4x4) 12 x 16 x 16 20 x 6 x 6

Conv2D(3x3, 12->24) 24 x 16 x 16 20 x 14 x 14

GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64

Conv3D(3x3x3, 3->12) 12 x 20 x 64 x 64 3 x 3 x 3

Pool3D(4x4x4) 12 x 5 x 16 x 16 6 x 6 x 6

Conv3D(3x3x3, 12->24) 24 x 5 x 16 x 16 14 x 14 x 14

GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Build slowly in space,  

Build slowly in time  

”Slow Fusion”
3D  

CNN

(Small example  

architectures, in  

practice much  

bigger)



Layer
Size
(C x T x H x W)

Receptive Field  

(T x H x W)
Input 3 x 20 x 64 x 64

Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3

Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6

Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14

GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64

Conv2D(3x3, 3*20->12) 12 x 64 x 64 20 x 3 x 3

Pool2D(4x4) 12 x 16 x 16 20 x 6 x 6

Conv2D(3x3, 12->24) 24 x 16 x 16 20 x 14 x 14

GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64

Conv3D(3x3x3, 3->12) 12 x 20 x 64 x 64 3 x 3 x 3

Pool3D(4x4x4) 12 x 5 x 16 x 16 6 x 6 x 6

Conv3D(3x3x3, 12->24) 24 x 5 x 16 x 16 14 x 14 x 14

GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

What is the  

difference?

Slide credit: Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

(Small example  

architectures, in  

practice much  

bigger)

Late  

Fusion

Early  

Fusion

3D  

CNN

Build slowly in space,

All-at-once in time at end

Build slowly in space,

All-at-once in time at start

Build slowly in space,  

Build slowly in time  

”Slow Fusion”



H = 224

H = 224

T = 16

Cout
different filters

Slide credit: Justin Johnson

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

T = 16

W = 224

in
Input: C x T x H x W

(3D grid with C
in
-dim  

feat at each point)

Weight:

out in
C x C x T x 3 x 3

Slide over x and y

Output:

out
C x H x W

2D grid with C
out

–dim  

feat at each point

W = 224



in
Input: C x T x H x W

(3D grid with C
in
-dim  

feat at each point)

H = 224

Weight:

out in
C x C x T x 3 x 3

Slide over x and y

No temporal shift-invariance!  

Needs to learn separate filters  

for the same motion at different  

times in the clip

Output:

out
C x H x W

2D grid with C
out

–dim  

feat at each point

T = 16

W = 224
W = 224

Slide credit: Justin Johnson

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Cout
different filters



in
Input: C x T x H x W

(3D grid with C
in
-dim  

feat at each point)

H = 224

Weight:

out in
C x C x T x 3 x 3

Slide over x and y

No temporal shift-invariance!  

Needs to learn separate filters  

for the same motion at different  

times in the clip

Output:

out
C x H x W

2D grid with C
out

–dim  

feat at each point

T = 16

W = 224
W = 224

Slide credit: Justin Johnson

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Cout
different filters

How to recognize blue to orange

transitions anywhere in space and time?

T = 16

W = 224
W = 224



H = 224 T = 3

Output:

out
C x T x H x W

3D grid with C
out

–dim  

feat at each point

H = 224

Cout
different filters

Slide credit: Justin Johnson

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

How to recognize blue to orange

transitions anywhere in space and time?

T = 16

W = 224W = 224

in
Input: C x T x H x W

(3D grid with C
in
-dim  

feat at each point)

Weight:

out in
C x C x 3 x 3 x 3



in
Input: C x T x H x W

(3D grid with C
in
-dim  

feat at each point)

H = 224

Weight:

out in
C x C x 3 x 3 x 3

Slide over x, y and t

Temporal shift-invariant  

since each filter slides  

over time!

T = 3

Output:

out
C x T x H x W

3D grid with C
out

–dim  

feat at each point

H = 224

Cout
different filters

Slide credit: Justin Johnson

T = 16

W = 224 How to recognize blue to orange

transitions anywhere in space and time?

W = 224

2D Conv (Early Fusion) vs 3D Conv (3D CNN)



H = 224 T = 3

First-layer filters have shape

3 (RGB) x 4 (frames) x 5 x 5

(space)

Can visualize as video clips!

36

Slide credit: Justin Johnson

How to recognize blue to orange

transitions anywhere in space and time?

T = 16

W = 224

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Cout
different filters

Temporal shift-invariant  

since each filter slides  

over time!

in
Input: C x T x H x W

(3D grid with C
in
-dim  

feat at each point)

Weight:

out in
C x C x 3 x 3 x 3

Slide over x, y and t



1 million YouTube videos  

annotated with labels for 487  

different types of sports

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Ground Truth  

Correct prediction 

Incorrect prediction

Slide credit: Justin Johnson

Example Video Dataset: Sports-1M



Single Frame  

model works well

– always try this  

first!

3D CNNs have  

improved a lot  

since 2014!

Slide credit: Justin JohnsonKarpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Early Fusion vs Late Fusion vs 3D CNN



Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015 Slide credit: Justin Johnson

C3D: The VGG of 3D CNNs
Layer Size MFLOPs

Input 3 x 16 x 112 x 112

Conv1 (3x3x3) 64 x 16 x 112 x 112 1.04

Pool1 (1x2x2) 64 x 16 x 56 x 56

Conv2 (3x3x3) 128 x 16 x 56 x 56 11.10

Pool2 (2x2x2) 128 x 8 x 28 x 28

Conv3a (3x3x3) 256 x 8 x 28 x 28 5.55

Conv3b (3x3x3) 256 x 8 x 28 x 28 11.10

Pool3 (2x2x2) 256 x 4 x 14 x 14

Conv4a (3x3x3) 512 x 4 x 14 x 14 2.77

Conv4b (3x3x3) 512 x 4 x 14 x 14 5.55

Pool4 (2x2x2) 512 x 2 x 7 x 7

Conv5a (3x3x3) 512 x 2 x 7 x 7 0.69

Conv5b (3x3x3) 512 x 2 x 7 x 7 0.69

Pool5 512 x 1 x 3 x 3

FC6 4096 0.51

FC7 4096 0.45

FC8 C 0.05

3D CNN that uses all 3x3x3 conv and 2x2x2

pooling (except Pool1 which is 1x2x2)

Released model pretrained on  Sports-1M: 

Many people used this  as a video feature

extractor



Layer Size MFLOPs

Input 3 x 16 x 112 x 112

Conv1 (3x3x3) 64 x 16 x 112 x 112 1.04

Pool1 (1x2x2) 64 x 16 x 56 x 56

Conv2 (3x3x3) 128 x 16 x 56 x 56 11.10

Pool2 (2x2x2) 128 x 8 x 28 x 28

Conv3a (3x3x3) 256 x 8 x 28 x 28 5.55

Conv3b (3x3x3) 256 x 8 x 28 x 28 11.10

Pool3 (2x2x2) 256 x 4 x 14 x 14

Conv4a (3x3x3) 512 x 4 x 14 x 14 2.77

Conv4b (3x3x3) 512 x 4 x 14 x 14 5.55

Pool4 (2x2x2) 512 x 2 x 7 x 7

Conv5a (3x3x3) 512 x 2 x 7 x 7 0.69

Conv5b (3x3x3) 512 x 2 x 7 x 7 0.69

Pool5 512 x 1 x 3 x 3

FC6 4096 0.51

FC7 4096 0.45

FC8 C 0.05

3D CNN that uses all 3x3x3 conv and 2x2x2

pooling (except Pool1 which is 1x2x2)

Released model pretrained on  Sports-1M: 

Many people used this  as a video feature

extractor

Problem: 3x3x3 conv is very expensive!

AlexNet: 0.7 GFLOP

VGG-16: 13.6 GFLOP

C3D: 39.5 GFLOP (2.9x VGG!)

Slide credit: Justin JohnsonTran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015

C3D: The VGG of 3D CNNs



Slide credit: Justin Johnson
Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015

Early Fusion vs Late Fusion vs 3D CNN



Slide credit: Justin Johnson

Recognizing Actions from Motion

We can easily recognize actions using only motion information

Johansson, “Visual perception of biological motion and a model for its analysis.” Perception & Psychophysics. 14(2):201-211. 1973.



Image at frame t

Image at frame t+1

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014
Slide credit: Justin Johnson

Measuring Motion: Optical Flow



Image at frame t

Image at frame t+1

Optical flow gives a

displacement field F between  

images It and It+1

Tells where each pixel will  

move in the next frame:  

F(x, y) = (dx, dy)  

It+1(x+dx, y+dy) = It(x, y)

Slide credit: Justin Johnson
Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Measuring Motion: Optical Flow



Image at frame t

Image at frame t+1

displacement field F between  

images It and It+1

Tells where each pixel will  

move in the next frame:  

F(x, y) = (dx, dy)  

It+1(x+dx, y+dy) = It(x, y)

Vertical Flow dy

Optical Flow highlights

local motion

Horizontal flow dx

Slide credit: Justin Johnson
Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Measuring Motion: Optical Flow
Optical flow gives a



Input: Stack of optical flow:  

[2*(T-1)] x H x W

Early fusion: First 2D conv  

processes all flow images

Input: Single Image  

3 x H x W

Slide credit: Justin Johnson

Separating Motion and Appearance: Two-Stream Networks

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014



Slide credit: Justin Johnson
Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Separating Motion and Appearance: Two-Stream Networks



First event Second event3D  

CNN

So far all our temporal CNNs only model local  

motion between frames in very short clips of

~2-5 seconds. What about long-term structure?

Time
~5 seconds

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure



First event Second event3D  

CNN

We know how to handle  

sequences! How about  

recurrent networks?

Time
~5 seconds

So far all our temporal CNNs only model local  

motion between frames in very short clips of

~2-5 seconds. What about long-term structure?

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure



CNN CNN CNN CNN CNN

Time

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure

Extract  

features  

with CNN  

(2D or 3D)



CNN CNN CNN CNN CNN

Process local features using recurrent network (e.g. LSTM)

Time

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure

Extract  

features  

with CNN  

(2D or 3D)



CNN CNN CNN CNN CNN

Extract  

features  

with CNN  

(2D or 3D)

Process local features using recurrent network (e.g. LSTM)  

Many to one: One output at end of video

Time

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure



CNN CNN CNN CNN CNN

Extract  

features  

with CNN  

(2D or 3D)

Process local features using recurrent network (e.g. LSTM)  

Many to many: one output per video frame

Time

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure



CNN CNN CNN CNN CNN

Extract  

features  

with CNN  

(2D or 3D)

Sometimes don’t backprop to CNN to save  

memory; pretrain and use it as a feature extractor

TimeBaccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011

Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure



CNN CNN CNN CNN CNN

Extract  

features  

with CNN  

(2D or 3D)

Inside CNN: Each value is a function of a fixed temporal window (local temporal structure)  

Inside RNN: Each vector is a function of all previous vectors (global temporal structure)  

Can we merge both approaches?

TimeBaccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011

Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure



depth x0

time

x1 x2 x3 x4
x5 x6

y0 y1 y2 y3 y4
y5 y6

Three-layer RNN

h3
0

h3
4

h3
5

h3
6

We can use a  

similar structure to  

process videos!

h3
1

h3
2

h3
3

h2
0

h2
4

h2
5

h2
6

h2
1

h2
2

h2
3

h1
0

h1
4

h1
5

h1
6

h1
1

h1
2

h1
3

Recall: Multi-layer  RNN

Slide Credit: cs231n



2D conv 2D conv 2D conv 2D conv

Layer 2

Lecture 10 - 57

Layer 1

Layer 3

Entire network  

uses 2D  

feature maps:  

C x H x W

Each depends  

on two inputs:

1.Same layer,  

previous  

timestep

2.Prev layer,  

same timestep

Use different weights  

at each layer, share  

weights across time

Slide credit: Justin Johnson

Recurrent Convolutional Network

Ballas et al, “Delving Deeper into  Convolutional Networks for Learning  Video Representations”, ICLR 2016



Input features:  

C x H x W

Output features:  

C x H x W

Normal 2D CNN:

2D Conv

Slide credit: Justin Johnson

Recurrent Convolutional Network



Recall: Recurrent Network

RNN-like  

recurrence

Features from layer L,  

timestep t-1

Features for layer  

L, timestep t
Features from layer  

L-1, timestep t

Slide credit: Justin Johnson

Recurrent Convolutional Network

Ballas et al, “Delving Deeper into  Convolutional Networks for Learning  Video Representations”, ICLR 2016



Features from layer L,  

timestep t-1

Recall: Vanilla RNN

Replace all matrix multiply  

with 2D convolution!

2D Conv

2D Conv

+
tanh

Features for layer  

L, timestep t
Features from layer  

L-1, timestep t

Slide credit: Justin Johnson

Recurrent Convolutional Network

Ballas et al, “Delving Deeper into  Convolutional Networks for Learning  Video Representations”, ICLR 2016



CNN

Time

CNN

Recurrent  

CNN
CNN: finite  

temporal extent  

(convolutional)

Recurrent  

CNN

RNN: Infinite  

temporal extent  

(fully-connected)

Time

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011

Donahue et al, “Long-term recurrent convolutional networks for visual recognition and 

description”, CVPR 2015

Ballas et al, “Delving Deeper into Convolutional Networks  for Learning 

Video Representations”, ICLR 2016

Recurrent CNN: Infinite  

temporal extent  

(convolutional)

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure



CNN

Time

CNN

Recurrent  

CNN
CNN: finite  

temporal extent  

(convolutional)

Recurrent  

CNN

RNN: Infinite  

temporal extent  

(fully-connected)

Time

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011

Donahue et al, “Long-term recurrent convolutional networks for visual recognition and 

description”, CVPR 2015

Ballas et al, “Delving Deeper into Convolutional Networks  for Learning 

Video Representations”, ICLR 2016

Recurrent CNN: Infinite  

temporal extent  

(convolutional)

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure

Problem: RNNs are slow for long

sequences (can’t be parallelized)



mul(→) + add (↑)

A
lig

n
m

e
n
t

A
tt
e
n
ti
o
n

Inputs:

Input vectors: x (shape: N x D)

softmax (↑)

y1 Outputs:

context vectors: y (shape: Dv)

Operations:

Key vectors: k = xWk

Value vectors: v = xW
v

Query vectors: q = xWq  

Alignment: ei,j = qj ᐧ ki / √D  

Attention: a = softmax(e)  

Output: yj = ∑i ai,j vi

x2

x1

x0

e2,0

e1,0

e0,0

a2,0

a1,0

a0,0

e2,1

e1,1

e0,1

e2,2

e1,2

e0,2

a2,1

a1,1

a0,1

a2,2

a1,2

a0,2

q0 q1 q2

y2y0

In
p
u
t
v
e

c
to

rs

k2

k1

k0

v2

v1

v0

self-attention

x0 x1 x2

y0 y1 y2

Slide credit: Justin Johnson

Recall: Self-Attention



3D  

CNN

Input clip

Nonlocal Block

Slide credit: Justin Johnson
Wang et al, “Non-local neural networks”, CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)

Features:

C x T x H xW



3D  

CNN

Queries:

C’ x T x H xW

1x1x1 Conv

Input clip

1x1x1 Conv

Nonlocal Block

Slide credit: Justin Johnson
Wang et al, “Non-local neural networks”, CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)

Features:

C x T x H xW

Keys:

C’ x T x H xW

1x1x1 Conv

Values:

C’ x T x H xW



3D  

CNN

Queries:

C’ x T x H xW

1x1x1 Conv

x

Transpose

softmax

Attention Weights

(THW) x (THW)

Input clip

1x1x1 Conv

Nonlocal Block

Slide credit: Justin Johnson
Wang et al, “Non-local neural networks”, CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)

Features:

C x T x H xW

Keys:

C’ x T x H xW

1x1x1 Conv

Values:

C’ x T x H xW



3D  

CNN

Queries:

C’ x T x H xW

Values:

C’ x T x H xW

1x1x1 Conv

Transpose

softmax

Attention Weights

(THW) x (THW)

x

C’ x T x H xW

Input clip

1x1x1 Conv

Nonlocal Block

Slide credit: Justin Johnson
Wang et al, “Non-local neural networks”, CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)

Features:

C x T x H xW

Keys:

C’ x T x H xW

1x1x1 Conv

x



3D  

CNN

Queries:

C’ x T x H xW

Values:

C’ x T x H xW

1x1x1 Conv

Transpose

softmax

Attention Weights

(THW) x (THW)

C’ x T x H xW

1x1x1 Conv

C x T x H xW

Input clip

1x1x1 Conv

Nonlocal Block

Slide credit: Justin Johnson
Wang et al, “Non-local neural networks”, CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)

Features:

C x T x H xW

Keys:

C’ x T x H xW

1x1x1 Conv

x

x



3D  

CNN
Features:

C x T x H xW

Queries:

C’ x T x H xW

Keys:

C’ x T x H xW

Values:

C’ x T x H xW

1x1x1 Conv

1x1x1 Conv

Transpose

softmax

Attention Weights

(THW) x (THW)

C’ x T x H xW

1x1x1 Conv

+

C x T x H xW

Residual ConnectionInput clip

1x1x1 Conv

Nonlocal Block

Slide credit: Justin Johnson
Wang et al, “Non-local neural networks”, CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)

x

x



Input clip

3D CNN

Nonlocal Block

3D CNN 3D CNN Running

We can add nonlocal blocks into existing 3D CNN architectures.  

But what is the best 3D CNN architecture?

Nonlocal Block

Slide credit: Justin Johnson
Wang et al, “Non-local neural networks”, CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)



Carreira and Zisserman, “Quo Vadis, Action Recognition? ANew Model and the Kinetics Dataset”, CVPR 2017

Lecture 10 -

Slide credit: Justin Johnson

Inflating 2D Networks to 3D (I3D)
We can add nonlocal blocks into existing 3D CNN architectures.  

But what is the best 3D CNN architecture?

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool  

layer with a 3D Kt x Kh x Kw version



3x3  

Conv

1x1  

Conv

3x3  

MaxPool

Concatenate

1x1  

Conv
1x1  

Conv

5x5  

Conv

1x1 

Conv

Previous layer

Carreira and Zisserman, “Quo Vadis, Action Recognition? ANew Model and the Kinetics Dataset”, CVPR 2017

Lecture 10 - 72

Slide credit: Justin Johnson

Inflating 2D Networks to 3D (I3D)

Inception Block: Original

We can add nonlocal blocks into existing 3D CNN architectures.  

But what is the best 3D CNN architecture?

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool  

layer with a 3D Kt x Kh x Kw version



3x3x3  

Conv

1x1x1  

Conv

3x3x3  

MaxPool

Concatenate

1x1x1  

Conv
1x1x1  

Conv

5x5x5  

Conv

1x1x1  

Conv

Previous layer

Carreira and Zisserman, “Quo Vadis, Action Recognition? ANew Model and the Kinetics Dataset”, CVPR 2017

Lecture 10 - 73

Slide credit: Justin Johnson

Inflating 2D Networks to 3D (I3D)

Inception Block: Inflated

We can add nonlocal blocks into existing 3D CNN architectures.  

But what is the best 3D CNN architecture?

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool  

layer with a 3D Kt x Kh x Kw version



Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool  

layer with a 3D Kt x Kh x Kw version

Can use weights of 2D conv to  

initialize 3D conv: copy Kt times in  

space and divide by Kt

This gives the same result as 2D  

conv given “constant” video input

Input: 2D conv kernel:  

3 x H x W C
in 

x K
h 

x K
w

3D conv kernel:Input:

Copy kernel  

Kt times,  

divide by Kt

Output:  

H x W

Output:

Duplicate input Kt  

times

Output is the  

same!

Cin
x Kt x Kh xKw3 x Kt x H xW 1 x H x W

Slide credit: Justin Johnson

Inflating 2D Networks to 3D (I3D)
We can add nonlocal blocks into existing 3D CNN architectures.  

But what is the best 3D CNN architecture?

Carreira and Zisserman, “Quo Vadis, Action Recognition? ANew Model and the Kinetics Dataset”, CVPR 2017



All using Inception CNN

Carreira and Zisserman, “Quo Vadis, Action Recognition? ANew Model and the Kinetics Dataset”, CVPR 2017

Inflating 2D Networks to 3D (I3D)
We can add nonlocal blocks into existing 3D CNN architectures.  

But what is the best 3D CNN architecture?

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool  

layer with a 3D Kt x Kh x Kw version

Can use weights of 2D conv to  

initialize 3D conv: copy Kt times in  

space and divide by Kt

This gives the same result as 2D  

conv given “constant” video input

Slide Credit: cs231n



Bertasius et al, “Is Space-Time Attention All You Need for Video Understanding?”, ICML 2021  

Arnab et al, “ViViT: A Video Vision Transformer”, ICCV 2021

Neimark et al, “Video Transformer Network”, ICCV 2021

Fan et al, “Multiscale Vision Transformers”, ICCV 2021 

Li et al, “MViTv2: Improved Multiscale Vision Transformers for

Classification and Detection”, CVPR 2022

Slide credit: Justin Johnson

Vision Transformers for Video
Factorized attention: Attend over space / time               Pooling module: Reduce number of tokens



Li et al, “MViTv2: Improved Multiscale Vision Transformers for Classification and Detection”, CVPR 2022 Slide credit: Justin Johnson

Vision Transformers for Video



Swimming  

Running  

Jumping  

Eating  

Standing

Videos: Recognize actions

Slide credit: Justin Johnson

So Far: Classify Short Clips



Running Jumping

Chao et al, ” Rethinking the Faster R-CNN Architecture for Temporal Action Localization”, CVPR2018

Can use architecture similar to Faster R-CNN:  

first generate temporal proposals then classify

Slide credit: Justin Johnson

Temporal Action Localization

Given a long untrimmed video sequence, identify frames corresponding 

to different actions



Slide credit: Justin Johnson

Spatio-Temporal Detection

Given a long untrimmed video, detect all the people in both space and 

time and classify the activities they are performing.  

Some examples from AVA Dataset:

Gu et al, “AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions”, CVPR2018



[Gao et al. ECCV 2018, Afouras et al. Interspeech’18, Gabby et al. Interspeech’18, Owens & Efros ECCV’18,  

Ephrat et al. SIGGRAPH’18, Zhao et al. ECCV 2018, Gao & Grauman ICCV 2019, Zhao et al. ICCV 2019, Xu et  

al. ICCV 2019, Gan et al. CVPR 2020, Gao et al. CVPR 2021]

Visually-guided Audio Source Separation

Slide Credit: cs231n



Musical Instruments Source Separation

Gao & Grauman, Co-Separating Sounds of Visual Objects, ICCV 2019

Train on 100,000 unlabeled multi-source video clips,  

then separate audio for novel video.

Slide Credit: cs231n



Owens & Efros, Audio-visual scene analysis with self-supervised multisensory features, ECCV 2018

Korbar et al., Co-training of audio and video representations from self-supervised temporal synchronization, NeurIPS 2018

Learning Audio-Visual Synchronization

Slide Credit: cs231n



LoudnessMotion

Time

Slide Credit: Andrew Owens

Learning Audio-Visual Synchronization



3D Convolution

3D Convolution

1D Convolution

1D Convolution

1D Convolution

3D Convolution

3D Convolution

Aligned vs. misaligned

Owens & Efros, Audio-visual scene analysis with self-supervised multisensory features, ECCV 2018

Learning Audio-Visual Synchronization

Slide Credit: cs231n



Attention Bottlenecks for Multimodal Fusion, Nagrani et al. NeurIPS 2021

EPIC-Fusion: Audio-Visual Temporal Binding for Egocentric  

Action Recognition, Kazakos et al., ICCV 2019

Audio-Adaptive Activity Recognition AcrossVideo  

Domains, Yunhua et al. CVPR 2022

Multimodal Video Understanding

Slide Credit: cs231n
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