
Video Recognition and
Understanding

Indian Institute of Information Technology, Allahabad

By

Dr. Satish Kumar Singh & Dr. Shiv Ram Dubey
Computer Vision and Biometrics Lab
Department of Information Technology
Indian Institute of Information Technology, Allahabad

TEAM
Computer Vision and Biometrics Lab (CVBL)

Department of Information Technology

Indian Institute of Information Technology Allahabad

Course Instructors

Dr. Satish Kumar Singh, Associate Professor, IIIT Allahabad (Email: sk.singh@iiita.ac.in)

Dr. Shiv Ram Dubey, Assistant Professor, IIIT Allahabad (Email: srdubey@iiita.ac.in)

DISCLAIMER
The content (text, image, and graphics) used in this slide are

adopted from many sources for Academic purposes. Broadly,

the sources have been given due credit appropriately. However,

there is a chance of missing out some original primary

sources. The authors of this material do not claim any

copyright of such material.

(assume given a set of possible labels)

{dog, cat, truck, plane, ...}

cat

This image by Nikita is licensed under

CC-BY 2.0

Recall: (2D) Image Classification

Slide Credit: cs231n

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

Recall: (2D) Detection And Segmentation

Classification
Semantic

Segmentation
Object

Detection

Instance

Segmentation

CAT GRASS, CAT,

TREE, SKY
DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels This image is CC0 public domain

Slide Credit: cs231n

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en

This image is CC0 public domain

A video is a sequence of images

4D tensor: T x 3 x H x W

(or 3 x T x H x W)

…

9

…

Today: Video = 2D + Time

Slide Credit: cs231n

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Input video:

T x 3 x H x W

Swimming

Running

Jumping

Eating

Standing

Slide credit: Justin Johnson

Running video is in the public domain

Example Task: Video Classification

Swimming
Videos: Recognize actions Running

Jumping

Eating

Standing

Dog

Cat

Fish

Truck

Running video is in the public domain

Images: Recognize objects

Slide credit: Justin Johnson

Example Task: Video Classification

Input video:

T x 3 x H x W

Videos are ~30 frames per second (fps)

Size of uncompressed video

(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute

HD (1920 x 1080): ~10 GB per minute

Slide credit: Justin Johnson

Problem: Videos are big!

Input video:

T x 3 x H x W

Videos are ~30 frames per second (fps)

Size of uncompressed video

(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute

HD (1920 x 1080): ~10 GB per minute

Solution:

Train on short clips: low fps and low spatial resolution

e.g. T = 16 (3.2 seconds at 5 fps), H=W=112

~588 KB
Slide credit: Justin Johnson

Problem: Videos are big!

Raw video: Long, high FPS

Slide credit: Justin Johnson

Training on Clips

Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS

Slide credit: Justin Johnson

Training on Clips

Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS

Testing: Run model on different clips, average predictions

Slide credit: Justin Johnson

Training on Clips

Simple idea: train normal 2D CNN to classify video frames independently!

(Average predicted probs at test-time)

Often a very strong baseline for video classification

“Running” “Running” “Running” “Running” “Running” “Running”

CNN CNN CNN CNN CNN CNN CNN

“Running”

Slide credit: Justin Johnson

Video Classification: Single-Frame CNN

CNN CNN CNN CNN CNN CNN

Frame features

T x D x H’ x W’

2D CNN

on each

frame

Flatten

MLP

Class scores: C

Input:

T x 3 x H x W

Run 2D CNN on each

frame, concatenate

features and feed to MLP
Clip features:

TDH’W’

Intuition: Get high-level

appearance of each frame, and

combine them

Slide credit: Justin Johnson

Video Classification: Late Fusion (with FC layers)

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

CNN CNN CNN CNN CNN CNN2D CNN

on each

frame

Frame features

T x D x H’ x W’

Average Pool over space and time

Clip features: D
Linear

Class scores: C

Input:

T x 3 x H x W

Run 2D CNN on each

frame, pool features

and feed to Linear

Intuition: Get high-level

appearance of each frame, and

combine them

Slide credit: Justin Johnson

Video Classification: Late Fusion (with pooling)

CNN CNN CNN CNN CNN CNN2D CNN

on each

frame

Frame features

T x D x H’ x W’

Average Pool over space and time

Clip features: D
Linear

Class scores: C

Input:

T x 3 x H x W

Run 2D CNN on each

frame, pool features

and feed to Linear

Intuition: Get high-level

appearance of each frame, and

combine them

Slide credit: Justin Johnson

Video Classification: Late Fusion (with pooling)

Problem: Hard to compare

low-level motion between frames

2D CNN
Reshape:

3T x H x W

Class scores: C

Rest of the

network is

standard 2D CNN

Intuition: Compare frames

with very first conv layer,

after that normal 2D CNN

First 2D convolution

collapses all temporal

information:

Input: 3T x H x W

Output: D x H x W

Input:

T x 3 x H x W

Slide credit: Justin JohnsonKarpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Video Classification: Early Fusion

2D CNN
Reshape:

3T x H x W

Class scores: C

Rest of the

network is

standard 2D CNN

Intuition: Compare frames

with very first conv layer,

after that normal 2D CNN

First 2D convolution

collapses all temporal

information:

Input: 3T x H x W

Output: D x H x W

Input:

T x 3 x H x W

Slide credit: Justin JohnsonKarpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Video Classification: Early Fusion

Problem: One layer of temporal processing may not be enough!

3D CNN

Class scores: C

Intuition: Use 3D versions of

convolution and pooling to

slowly fuse temporal

information over the course of

the network

Each layer in the network is a

4D tensor: D x T x H x W

Use 3D conv and 3D pooling

operations

Input:

3 x T x H x W

Slide credit: Justin Johnson

Video Classification: 3D CNN

Ji et al, “3D Convolutional Neural Networks for Human Action Recognition”, TPAMI 2010

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

32

3

32x32x3 image

5x5x3 filter
32

convolve (slide) over all

spatial locations

activation map

1

28

28

Convolution Layer

Slide Credit: cs231n

Class

Scores

Fei-Fei Li, Yunzhu Li, Ruohan Gao FC

Layer

Input:

C x T x H x W

6x6x6 conv 5x5x5 conv 4x4x4 conv

3D Convolution

Slide Credit: cs231n

Layer
Size
(C x T x H x W)

Receptive Field

(T x H x W)
Input 3 x 20 x 64 x 64

Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3

Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6

Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14

GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

(Small example

architectures, in

practice much

bigger)

Slide credit: Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

Late

Fusion

Layer
Size
(C x T x H x W)

Receptive Field

(T x H x W)
Input 3 x 20 x 64 x 64

Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3

Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6

Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14

GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Conv(3x3)

Input

Slide credit: Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

(Small example

architectures, in

practice much

bigger)

Late

Fusion

Layer
Size
(C x T x H x W)

Receptive Field

(T x H x W)
Input 3 x 20 x 64 x 64

Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3

Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6

Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14

GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Pool(4x4)

Conv(3x3)

Input

Slide credit: Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

(Small example

architectures, in

practice much

bigger)

Late

Fusion

Layer
Size
(C x T x H x W)

Receptive Field

(T x H x W)
Input 3 x 20 x 64 x 64

Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3

Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6

Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14

GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Conv(3x3)

Pool(4x4)

Conv(3x3)

Input

Build slowly in space

Slide credit: Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

(Small example

architectures, in

practice much

bigger)

Late

Fusion

Layer
Size
(C x T x H x W)

Receptive Field

(T x H x W)
Input 3 x 20 x 64 x 64

Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3

Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6

Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14

GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Input

30

GlobalAvg

Conv(3x3)

Pool(4x4)

Conv(3x3)

Build slowly in space,

All-at-once in time at end

Slide credit: Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

(Small example

architectures, in

practice much

bigger)

Late

Fusion

Layer
Size
(C x T x H x W)

Receptive Field

(T x H x W)
Input 3 x 20 x 64 x 64

Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3

Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6

Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14

GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64

Conv2D(3x3, 3*20->12) 12 x 64 x 64 20 x 3 x 3

Pool2D(4x4) 12 x 16 x 16 20 x 6 x 6

Conv2D(3x3, 12->24) 24 x 16 x 16 20 x 14 x 14

GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Late

Fusion

Early

Fusion

Build slowly in space,

All-at-once in time at end

Build slowly in space,

All-at-once in time at start

Slide credit: Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

(Small example

architectures, in

practice much

bigger)

Late

Fusion

Early

Fusion

Build slowly in space,

All-at-once in time at end

Build slowly in space,

All-at-once in time at start

Slide credit: Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

Layer
Size
(C x T x H x W)

Receptive Field

(T x H x W)
Input 3 x 20 x 64 x 64

Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3

Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6

Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14

GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64

Conv2D(3x3, 3*20->12) 12 x 64 x 64 20 x 3 x 3

Pool2D(4x4) 12 x 16 x 16 20 x 6 x 6

Conv2D(3x3, 12->24) 24 x 16 x 16 20 x 14 x 14

GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64

Conv3D(3x3x3, 3->12) 12 x 20 x 64 x 64 3 x 3 x 3

Pool3D(4x4x4) 12 x 5 x 16 x 16 6 x 6 x 6

Conv3D(3x3x3, 12->24) 24 x 5 x 16 x 16 14 x 14 x 14

GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Build slowly in space,

Build slowly in time

”Slow Fusion”
3D

CNN

(Small example

architectures, in

practice much

bigger)

Layer
Size
(C x T x H x W)

Receptive Field

(T x H x W)
Input 3 x 20 x 64 x 64

Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3

Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6

Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14

GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64

Conv2D(3x3, 3*20->12) 12 x 64 x 64 20 x 3 x 3

Pool2D(4x4) 12 x 16 x 16 20 x 6 x 6

Conv2D(3x3, 12->24) 24 x 16 x 16 20 x 14 x 14

GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64

Conv3D(3x3x3, 3->12) 12 x 20 x 64 x 64 3 x 3 x 3

Pool3D(4x4x4) 12 x 5 x 16 x 16 6 x 6 x 6

Conv3D(3x3x3, 12->24) 24 x 5 x 16 x 16 14 x 14 x 14

GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

What is the

difference?

Slide credit: Justin Johnson

Early Fusion vs Late Fusion vs 3D CNN

(Small example

architectures, in

practice much

bigger)

Late

Fusion

Early

Fusion

3D

CNN

Build slowly in space,

All-at-once in time at end

Build slowly in space,

All-at-once in time at start

Build slowly in space,

Build slowly in time

”Slow Fusion”

H = 224

H = 224

T = 16

Cout
different filters

Slide credit: Justin Johnson

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

T = 16

W = 224

in
Input: C x T x H x W

(3D grid with C
in
-dim

feat at each point)

Weight:

out in
C x C x T x 3 x 3

Slide over x and y

Output:

out
C x H x W

2D grid with C
out

–dim

feat at each point

W = 224

in
Input: C x T x H x W

(3D grid with C
in
-dim

feat at each point)

H = 224

Weight:

out in
C x C x T x 3 x 3

Slide over x and y

No temporal shift-invariance!

Needs to learn separate filters

for the same motion at different

times in the clip

Output:

out
C x H x W

2D grid with C
out

–dim

feat at each point

T = 16

W = 224
W = 224

Slide credit: Justin Johnson

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Cout
different filters

in
Input: C x T x H x W

(3D grid with C
in
-dim

feat at each point)

H = 224

Weight:

out in
C x C x T x 3 x 3

Slide over x and y

No temporal shift-invariance!

Needs to learn separate filters

for the same motion at different

times in the clip

Output:

out
C x H x W

2D grid with C
out

–dim

feat at each point

T = 16

W = 224
W = 224

Slide credit: Justin Johnson

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Cout
different filters

How to recognize blue to orange

transitions anywhere in space and time?

T = 16

W = 224
W = 224

H = 224 T = 3

Output:

out
C x T x H x W

3D grid with C
out

–dim

feat at each point

H = 224

Cout
different filters

Slide credit: Justin Johnson

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

How to recognize blue to orange

transitions anywhere in space and time?

T = 16

W = 224W = 224

in
Input: C x T x H x W

(3D grid with C
in
-dim

feat at each point)

Weight:

out in
C x C x 3 x 3 x 3

in
Input: C x T x H x W

(3D grid with C
in
-dim

feat at each point)

H = 224

Weight:

out in
C x C x 3 x 3 x 3

Slide over x, y and t

Temporal shift-invariant

since each filter slides

over time!

T = 3

Output:

out
C x T x H x W

3D grid with C
out

–dim

feat at each point

H = 224

Cout
different filters

Slide credit: Justin Johnson

T = 16

W = 224 How to recognize blue to orange

transitions anywhere in space and time?

W = 224

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

H = 224 T = 3

First-layer filters have shape

3 (RGB) x 4 (frames) x 5 x 5

(space)

Can visualize as video clips!

36

Slide credit: Justin Johnson

How to recognize blue to orange

transitions anywhere in space and time?

T = 16

W = 224

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Cout
different filters

Temporal shift-invariant

since each filter slides

over time!

in
Input: C x T x H x W

(3D grid with C
in
-dim

feat at each point)

Weight:

out in
C x C x 3 x 3 x 3

Slide over x, y and t

1 million YouTube videos

annotated with labels for 487

different types of sports

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Ground Truth

Correct prediction

Incorrect prediction

Slide credit: Justin Johnson

Example Video Dataset: Sports-1M

Single Frame

model works well

– always try this

first!

3D CNNs have

improved a lot

since 2014!

Slide credit: Justin JohnsonKarpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Early Fusion vs Late Fusion vs 3D CNN

Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015 Slide credit: Justin Johnson

C3D: The VGG of 3D CNNs
Layer Size MFLOPs

Input 3 x 16 x 112 x 112

Conv1 (3x3x3) 64 x 16 x 112 x 112 1.04

Pool1 (1x2x2) 64 x 16 x 56 x 56

Conv2 (3x3x3) 128 x 16 x 56 x 56 11.10

Pool2 (2x2x2) 128 x 8 x 28 x 28

Conv3a (3x3x3) 256 x 8 x 28 x 28 5.55

Conv3b (3x3x3) 256 x 8 x 28 x 28 11.10

Pool3 (2x2x2) 256 x 4 x 14 x 14

Conv4a (3x3x3) 512 x 4 x 14 x 14 2.77

Conv4b (3x3x3) 512 x 4 x 14 x 14 5.55

Pool4 (2x2x2) 512 x 2 x 7 x 7

Conv5a (3x3x3) 512 x 2 x 7 x 7 0.69

Conv5b (3x3x3) 512 x 2 x 7 x 7 0.69

Pool5 512 x 1 x 3 x 3

FC6 4096 0.51

FC7 4096 0.45

FC8 C 0.05

3D CNN that uses all 3x3x3 conv and 2x2x2

pooling (except Pool1 which is 1x2x2)

Released model pretrained on Sports-1M:

Many people used this as a video feature

extractor

Layer Size MFLOPs

Input 3 x 16 x 112 x 112

Conv1 (3x3x3) 64 x 16 x 112 x 112 1.04

Pool1 (1x2x2) 64 x 16 x 56 x 56

Conv2 (3x3x3) 128 x 16 x 56 x 56 11.10

Pool2 (2x2x2) 128 x 8 x 28 x 28

Conv3a (3x3x3) 256 x 8 x 28 x 28 5.55

Conv3b (3x3x3) 256 x 8 x 28 x 28 11.10

Pool3 (2x2x2) 256 x 4 x 14 x 14

Conv4a (3x3x3) 512 x 4 x 14 x 14 2.77

Conv4b (3x3x3) 512 x 4 x 14 x 14 5.55

Pool4 (2x2x2) 512 x 2 x 7 x 7

Conv5a (3x3x3) 512 x 2 x 7 x 7 0.69

Conv5b (3x3x3) 512 x 2 x 7 x 7 0.69

Pool5 512 x 1 x 3 x 3

FC6 4096 0.51

FC7 4096 0.45

FC8 C 0.05

3D CNN that uses all 3x3x3 conv and 2x2x2

pooling (except Pool1 which is 1x2x2)

Released model pretrained on Sports-1M:

Many people used this as a video feature

extractor

Problem: 3x3x3 conv is very expensive!

AlexNet: 0.7 GFLOP

VGG-16: 13.6 GFLOP

C3D: 39.5 GFLOP (2.9x VGG!)

Slide credit: Justin JohnsonTran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015

C3D: The VGG of 3D CNNs

Slide credit: Justin Johnson
Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015

Early Fusion vs Late Fusion vs 3D CNN

Slide credit: Justin Johnson

Recognizing Actions from Motion

We can easily recognize actions using only motion information

Johansson, “Visual perception of biological motion and a model for its analysis.” Perception & Psychophysics. 14(2):201-211. 1973.

Image at frame t

Image at frame t+1

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014
Slide credit: Justin Johnson

Measuring Motion: Optical Flow

Image at frame t

Image at frame t+1

Optical flow gives a

displacement field F between

images It and It+1

Tells where each pixel will

move in the next frame:

F(x, y) = (dx, dy)

It+1(x+dx, y+dy) = It(x, y)

Slide credit: Justin Johnson
Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Measuring Motion: Optical Flow

Image at frame t

Image at frame t+1

displacement field F between

images It and It+1

Tells where each pixel will

move in the next frame:

F(x, y) = (dx, dy)

It+1(x+dx, y+dy) = It(x, y)

Vertical Flow dy

Optical Flow highlights

local motion

Horizontal flow dx

Slide credit: Justin Johnson
Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Measuring Motion: Optical Flow
Optical flow gives a

Input: Stack of optical flow:

[2*(T-1)] x H x W

Early fusion: First 2D conv

processes all flow images

Input: Single Image

3 x H x W

Slide credit: Justin Johnson

Separating Motion and Appearance: Two-Stream Networks

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Slide credit: Justin Johnson
Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Separating Motion and Appearance: Two-Stream Networks

First event Second event3D

CNN

So far all our temporal CNNs only model local

motion between frames in very short clips of

~2-5 seconds. What about long-term structure?

Time
~5 seconds

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure

First event Second event3D

CNN

We know how to handle

sequences! How about

recurrent networks?

Time
~5 seconds

So far all our temporal CNNs only model local

motion between frames in very short clips of

~2-5 seconds. What about long-term structure?

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure

CNN CNN CNN CNN CNN

Time

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure

Extract

features

with CNN

(2D or 3D)

CNN CNN CNN CNN CNN

Process local features using recurrent network (e.g. LSTM)

Time

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure

Extract

features

with CNN

(2D or 3D)

CNN CNN CNN CNN CNN

Extract

features

with CNN

(2D or 3D)

Process local features using recurrent network (e.g. LSTM)

Many to one: One output at end of video

Time

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure

CNN CNN CNN CNN CNN

Extract

features

with CNN

(2D or 3D)

Process local features using recurrent network (e.g. LSTM)

Many to many: one output per video frame

Time

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure

CNN CNN CNN CNN CNN

Extract

features

with CNN

(2D or 3D)

Sometimes don’t backprop to CNN to save

memory; pretrain and use it as a feature extractor

TimeBaccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011

Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure

CNN CNN CNN CNN CNN

Extract

features

with CNN

(2D or 3D)

Inside CNN: Each value is a function of a fixed temporal window (local temporal structure)

Inside RNN: Each vector is a function of all previous vectors (global temporal structure)

Can we merge both approaches?

TimeBaccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011

Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure

depth x0

time

x1 x2 x3 x4
x5 x6

y0 y1 y2 y3 y4
y5 y6

Three-layer RNN

h3
0

h3
4

h3
5

h3
6

We can use a

similar structure to

process videos!

h3
1

h3
2

h3
3

h2
0

h2
4

h2
5

h2
6

h2
1

h2
2

h2
3

h1
0

h1
4

h1
5

h1
6

h1
1

h1
2

h1
3

Recall: Multi-layer RNN

Slide Credit: cs231n

2D conv 2D conv 2D conv 2D conv

Layer 2

Lecture 10 - 57

Layer 1

Layer 3

Entire network

uses 2D

feature maps:

C x H x W

Each depends

on two inputs:

1.Same layer,

previous

timestep

2.Prev layer,

same timestep

Use different weights

at each layer, share

weights across time

Slide credit: Justin Johnson

Recurrent Convolutional Network

Ballas et al, “Delving Deeper into Convolutional Networks for Learning Video Representations”, ICLR 2016

Input features:

C x H x W

Output features:

C x H x W

Normal 2D CNN:

2D Conv

Slide credit: Justin Johnson

Recurrent Convolutional Network

Recall: Recurrent Network

RNN-like

recurrence

Features from layer L,

timestep t-1

Features for layer

L, timestep t
Features from layer

L-1, timestep t

Slide credit: Justin Johnson

Recurrent Convolutional Network

Ballas et al, “Delving Deeper into Convolutional Networks for Learning Video Representations”, ICLR 2016

Features from layer L,

timestep t-1

Recall: Vanilla RNN

Replace all matrix multiply

with 2D convolution!

2D Conv

2D Conv

+
tanh

Features for layer

L, timestep t
Features from layer

L-1, timestep t

Slide credit: Justin Johnson

Recurrent Convolutional Network

Ballas et al, “Delving Deeper into Convolutional Networks for Learning Video Representations”, ICLR 2016

CNN

Time

CNN

Recurrent

CNN
CNN: finite

temporal extent

(convolutional)

Recurrent

CNN

RNN: Infinite

temporal extent

(fully-connected)

Time

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011

Donahue et al, “Long-term recurrent convolutional networks for visual recognition and

description”, CVPR 2015

Ballas et al, “Delving Deeper into Convolutional Networks for Learning

Video Representations”, ICLR 2016

Recurrent CNN: Infinite

temporal extent

(convolutional)

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure

CNN

Time

CNN

Recurrent

CNN
CNN: finite

temporal extent

(convolutional)

Recurrent

CNN

RNN: Infinite

temporal extent

(fully-connected)

Time

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011

Donahue et al, “Long-term recurrent convolutional networks for visual recognition and

description”, CVPR 2015

Ballas et al, “Delving Deeper into Convolutional Networks for Learning

Video Representations”, ICLR 2016

Recurrent CNN: Infinite

temporal extent

(convolutional)

Slide credit: Justin Johnson

Modeling Long-term Temporal Structure

Problem: RNNs are slow for long

sequences (can’t be parallelized)

mul(→) + add (↑)

A
lig

n
m

e
n
t

A
tt
e
n
ti
o
n

Inputs:

Input vectors: x (shape: N x D)

softmax (↑)

y1 Outputs:

context vectors: y (shape: Dv)

Operations:

Key vectors: k = xWk

Value vectors: v = xW
v

Query vectors: q = xWq

Alignment: ei,j = qj ᐧ ki / √D

Attention: a = softmax(e)

Output: yj = ∑i ai,j vi

x2

x1

x0

e2,0

e1,0

e0,0

a2,0

a1,0

a0,0

e2,1

e1,1

e0,1

e2,2

e1,2

e0,2

a2,1

a1,1

a0,1

a2,2

a1,2

a0,2

q0 q1 q2

y2y0

In
p
u
t
v
e

c
to

rs

k2

k1

k0

v2

v1

v0

self-attention

x0 x1 x2

y0 y1 y2

Slide credit: Justin Johnson

Recall: Self-Attention

3D

CNN

Input clip

Nonlocal Block

Slide credit: Justin Johnson
Wang et al, “Non-local neural networks”, CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)

Features:

C x T x H xW

3D

CNN

Queries:

C’ x T x H xW

1x1x1 Conv

Input clip

1x1x1 Conv

Nonlocal Block

Slide credit: Justin Johnson
Wang et al, “Non-local neural networks”, CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)

Features:

C x T x H xW

Keys:

C’ x T x H xW

1x1x1 Conv

Values:

C’ x T x H xW

3D

CNN

Queries:

C’ x T x H xW

1x1x1 Conv

x

Transpose

softmax

Attention Weights

(THW) x (THW)

Input clip

1x1x1 Conv

Nonlocal Block

Slide credit: Justin Johnson
Wang et al, “Non-local neural networks”, CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)

Features:

C x T x H xW

Keys:

C’ x T x H xW

1x1x1 Conv

Values:

C’ x T x H xW

3D

CNN

Queries:

C’ x T x H xW

Values:

C’ x T x H xW

1x1x1 Conv

Transpose

softmax

Attention Weights

(THW) x (THW)

x

C’ x T x H xW

Input clip

1x1x1 Conv

Nonlocal Block

Slide credit: Justin Johnson
Wang et al, “Non-local neural networks”, CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)

Features:

C x T x H xW

Keys:

C’ x T x H xW

1x1x1 Conv

x

3D

CNN

Queries:

C’ x T x H xW

Values:

C’ x T x H xW

1x1x1 Conv

Transpose

softmax

Attention Weights

(THW) x (THW)

C’ x T x H xW

1x1x1 Conv

C x T x H xW

Input clip

1x1x1 Conv

Nonlocal Block

Slide credit: Justin Johnson
Wang et al, “Non-local neural networks”, CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)

Features:

C x T x H xW

Keys:

C’ x T x H xW

1x1x1 Conv

x

x

3D

CNN
Features:

C x T x H xW

Queries:

C’ x T x H xW

Keys:

C’ x T x H xW

Values:

C’ x T x H xW

1x1x1 Conv

1x1x1 Conv

Transpose

softmax

Attention Weights

(THW) x (THW)

C’ x T x H xW

1x1x1 Conv

+

C x T x H xW

Residual ConnectionInput clip

1x1x1 Conv

Nonlocal Block

Slide credit: Justin Johnson
Wang et al, “Non-local neural networks”, CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)

x

x

Input clip

3D CNN

Nonlocal Block

3D CNN 3D CNN Running

We can add nonlocal blocks into existing 3D CNN architectures.

But what is the best 3D CNN architecture?

Nonlocal Block

Slide credit: Justin Johnson
Wang et al, “Non-local neural networks”, CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)

Carreira and Zisserman, “Quo Vadis, Action Recognition? ANew Model and the Kinetics Dataset”, CVPR 2017

Lecture 10 -

Slide credit: Justin Johnson

Inflating 2D Networks to 3D (I3D)
We can add nonlocal blocks into existing 3D CNN architectures.

But what is the best 3D CNN architecture?

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool

layer with a 3D Kt x Kh x Kw version

3x3

Conv

1x1

Conv

3x3

MaxPool

Concatenate

1x1

Conv
1x1

Conv

5x5

Conv

1x1

Conv

Previous layer

Carreira and Zisserman, “Quo Vadis, Action Recognition? ANew Model and the Kinetics Dataset”, CVPR 2017

Lecture 10 - 72

Slide credit: Justin Johnson

Inflating 2D Networks to 3D (I3D)

Inception Block: Original

We can add nonlocal blocks into existing 3D CNN architectures.

But what is the best 3D CNN architecture?

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool

layer with a 3D Kt x Kh x Kw version

3x3x3

Conv

1x1x1

Conv

3x3x3

MaxPool

Concatenate

1x1x1

Conv
1x1x1

Conv

5x5x5

Conv

1x1x1

Conv

Previous layer

Carreira and Zisserman, “Quo Vadis, Action Recognition? ANew Model and the Kinetics Dataset”, CVPR 2017

Lecture 10 - 73

Slide credit: Justin Johnson

Inflating 2D Networks to 3D (I3D)

Inception Block: Inflated

We can add nonlocal blocks into existing 3D CNN architectures.

But what is the best 3D CNN architecture?

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool

layer with a 3D Kt x Kh x Kw version

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool

layer with a 3D Kt x Kh x Kw version

Can use weights of 2D conv to

initialize 3D conv: copy Kt times in

space and divide by Kt

This gives the same result as 2D

conv given “constant” video input

Input: 2D conv kernel:

3 x H x W C
in

x K
h

x K
w

3D conv kernel:Input:

Copy kernel

Kt times,

divide by Kt

Output:

H x W

Output:

Duplicate input Kt

times

Output is the

same!

Cin
x Kt x Kh xKw3 x Kt x H xW 1 x H x W

Slide credit: Justin Johnson

Inflating 2D Networks to 3D (I3D)
We can add nonlocal blocks into existing 3D CNN architectures.

But what is the best 3D CNN architecture?

Carreira and Zisserman, “Quo Vadis, Action Recognition? ANew Model and the Kinetics Dataset”, CVPR 2017

All using Inception CNN

Carreira and Zisserman, “Quo Vadis, Action Recognition? ANew Model and the Kinetics Dataset”, CVPR 2017

Inflating 2D Networks to 3D (I3D)
We can add nonlocal blocks into existing 3D CNN architectures.

But what is the best 3D CNN architecture?

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool

layer with a 3D Kt x Kh x Kw version

Can use weights of 2D conv to

initialize 3D conv: copy Kt times in

space and divide by Kt

This gives the same result as 2D

conv given “constant” video input

Slide Credit: cs231n

Bertasius et al, “Is Space-Time Attention All You Need for Video Understanding?”, ICML 2021

Arnab et al, “ViViT: A Video Vision Transformer”, ICCV 2021

Neimark et al, “Video Transformer Network”, ICCV 2021

Fan et al, “Multiscale Vision Transformers”, ICCV 2021

Li et al, “MViTv2: Improved Multiscale Vision Transformers for

Classification and Detection”, CVPR 2022

Slide credit: Justin Johnson

Vision Transformers for Video
Factorized attention: Attend over space / time Pooling module: Reduce number of tokens

Li et al, “MViTv2: Improved Multiscale Vision Transformers for Classification and Detection”, CVPR 2022 Slide credit: Justin Johnson

Vision Transformers for Video

Swimming

Running

Jumping

Eating

Standing

Videos: Recognize actions

Slide credit: Justin Johnson

So Far: Classify Short Clips

Running Jumping

Chao et al, ” Rethinking the Faster R-CNN Architecture for Temporal Action Localization”, CVPR2018

Can use architecture similar to Faster R-CNN:

first generate temporal proposals then classify

Slide credit: Justin Johnson

Temporal Action Localization

Given a long untrimmed video sequence, identify frames corresponding

to different actions

Slide credit: Justin Johnson

Spatio-Temporal Detection

Given a long untrimmed video, detect all the people in both space and

time and classify the activities they are performing.

Some examples from AVA Dataset:

Gu et al, “AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions”, CVPR2018

[Gao et al. ECCV 2018, Afouras et al. Interspeech’18, Gabby et al. Interspeech’18, Owens & Efros ECCV’18,

Ephrat et al. SIGGRAPH’18, Zhao et al. ECCV 2018, Gao & Grauman ICCV 2019, Zhao et al. ICCV 2019, Xu et

al. ICCV 2019, Gan et al. CVPR 2020, Gao et al. CVPR 2021]

Visually-guided Audio Source Separation

Slide Credit: cs231n

Musical Instruments Source Separation

Gao & Grauman, Co-Separating Sounds of Visual Objects, ICCV 2019

Train on 100,000 unlabeled multi-source video clips,

then separate audio for novel video.

Slide Credit: cs231n

Owens & Efros, Audio-visual scene analysis with self-supervised multisensory features, ECCV 2018

Korbar et al., Co-training of audio and video representations from self-supervised temporal synchronization, NeurIPS 2018

Learning Audio-Visual Synchronization

Slide Credit: cs231n

LoudnessMotion

Time

Slide Credit: Andrew Owens

Learning Audio-Visual Synchronization

3D Convolution

3D Convolution

1D Convolution

1D Convolution

1D Convolution

3D Convolution

3D Convolution

Aligned vs. misaligned

Owens & Efros, Audio-visual scene analysis with self-supervised multisensory features, ECCV 2018

Learning Audio-Visual Synchronization

Slide Credit: cs231n

Attention Bottlenecks for Multimodal Fusion, Nagrani et al. NeurIPS 2021

EPIC-Fusion: Audio-Visual Temporal Binding for Egocentric

Action Recognition, Kazakos et al., ICCV 2019

Audio-Adaptive Activity Recognition AcrossVideo

Domains, Yunhua et al. CVPR 2022

Multimodal Video Understanding

Slide Credit: cs231n

ACKNOWLEDGEMENT
Thanks to the following courses and corresponding researchers for making their
teaching/research material online

• CS231n: Deep Learning for Computer Vision, Stanford University

• Convolutional Neural Networks for Visual Recognition, Stanford University

• Deep Learning, Stanford University

• Introduction to Deep Learning, University of Illinois at Urbana-Champaign

• Introduction to Deep Learning, Carnegie Mellon University

• Natural Language Processing with Deep Learning, Stanford University

• And Many More Publicly Available Resources

 Questions?

	Slide 1: Video Recognition and Understanding
	Slide 2
	Slide 3
	Slide 4: Recall: (2D) Image Classification
	Slide 5: Recall: (2D) Detection And Segmentation
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Optical Flow highlights local motion
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87: Acknowledgement
	Slide 88

