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Outline: Explaining CNNs

• Visualization Methods

• Visualize Filters/Kernels (First Layer)

• Visualize the Representation Space (Last Layer)

• Visualize Activations

• Visualize Maximally Activating Image Patches

• Occlusion Visualization

• Early Methods 

• Backpropagation to Image

• Visualizing the Data Gradient

• Image Reconstruction from Latent Representation

• Guided Backpropagation (Deconvolution method)

• Class Attribution Map Methods

• Class Activation Maps (CAM)

• Gradient-weighted CAM (Grad-CAM) and Guided Grad-CAM

• Grad-CAM++ 3



Explaining CNNs: Visualization Methods
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Visualize Filters/Kernels (First Layer)

Krizhevsky, One weird trick for parallelizing convolutional neural networks, 2014
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Visualize Filters/Kernels (First Layer)

Krizhevsky, One weird trick for parallelizing convolutional neural networks, 2014
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Visualize Filters/Kernels (First Layer)

• You can visualize the 

kernels of higher layers 

but it is just not 

interesting
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Visualize Filters/Kernels (First Layer)

• You can visualize the 

kernels of higher layers 

but it is just not 

interesting

• Input to higher layers is 

no more the images we 

know or understand, so 

becomes difficult to 

interpret the filters 

beyond the first layer
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Visualize Filters/Kernels (First Layer)

The Gabor-like filters fatigue
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Visualize the Representation Space (Last Layer)

• 4096-dimensional feature vector for an image (layer immediately before the 

classifier) 

• Run the network on many images, collect the feature vectors
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Visualize the Representation Space (Last Layer)

• Visualize the “space” of FC7 feature

vectors by reducing dimensionality of

vectors from 4096 to 2 dimensions

12



Visualize the Representation Space (Last Layer)

• Visualize the “space” of FC7 feature

vectors by reducing dimensionality of

vectors from 4096 to 2 dimensions

• Use any dimensionality reduction 

algorithm

13



Visualize the Representation Space (Last Layer)

• Visualize the “space” of FC7 feature

vectors by reducing dimensionality of

vectors from 4096 to 2 dimensions

• Use any dimensionality reduction 

algorithm

• Simple algorithm: Principal Component 

Analysis (PCA)
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Visualize the Representation Space (Last Layer)

van der Maaten and Hinton, Visualizing High-Dimensional Data Using t-SNE, Journal of Machine Learning Research, 

2008

• Visualize the “space” of FC7 feature

vectors by reducing dimensionality of

vectors from 4096 to 2 dimensions

• Use any dimensionality reduction 

algorithm

• Simple algorithm: Principal Component 

Analysis (PCA)

• More complex: t-SNE (right)

(t-distributed Stochastic Neighbor Embedding)
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t-SNE Visualization

• Images that are nearby each other are also close in the CNN representation 

space, which implies that the CNN ”sees” them as being very similar

• Notice that the similarities are more often class-based and semantic, rather 

than pixel and color-based.
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Visualize Activations

Figure copyright: Jason Yosinski, 2014.

Conv5 feature map is 128 × 13 × 13; Visualize as 128 13 × 13 grayscale images
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Visualize Maximally Activating Image Patches

• Consider a CNN, and a single neuron in any of its intermediate layers
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Visualize Maximally Activating Image Patches

• Consider a CNN, and a single neuron in any of its intermediate layers

• Feed images to the CNN and identify all images which cause that particular 

neuron to fire 
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Visualize Maximally Activating Image Patches

• Consider a CNN, and a single neuron in any of its intermediate layers

• Feed images to the CNN and identify all images which cause that particular 

neuron to fire 

• We can then easily trace back to the patch in the image which causes that 

neuron to fire
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Visualize Maximally Activating Image Patches

• Consider a CNN, and a single neuron in any of its intermediate layers

• Feed images to the CNN and identify all images which cause that particular 

neuron to fire 

• We can then easily trace back to the patch in the image which causes that 

neuron to fire
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Visualize Maximally Activating Image Patches

• Repeating this for others neurons in the CNN shows us a pattern
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Visualize Maximally Activating Image Patches

• Repeating this for others neurons in the CNN shows us a pattern
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Occlusion Experiments

Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014

• Typically, we are interested in understanding 

which portions of an image are responsible for 

maximizing probability of a certain class
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Occlusion Experiments

Input image
Probability of correct 

class
Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014

• Typically, we are interested in understanding 

which portions of an image are responsible for 

maximizing probability of a certain class

• Occlude (gray out) different patches in the 

image (centered on each pixel), and see effect 

on predicted probability of the correct class ⇒
gives you a probability for each pixel
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Occlusion Experiments

Input image
Probability of correct 

class
Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014

• Typically, we are interested in understanding 

which portions of an image are responsible for 

maximizing probability of a certain class

• Occlude (gray out) different patches in the 

image (centered on each pixel), and see effect 

on predicted probability of the correct class ⇒
gives you a probability for each pixel

• For example, the first heat map (top) shows 

that occluding the face of the dog causes a 

maximum drop in the prediction probability
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Occlusion Experiments

Input image
Probability of correct 

class
Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014

• Typically, we are interested in understanding 

which portions of an image are responsible for 

maximizing probability of a certain class

• Occlude (gray out) different patches in the 

image (centered on each pixel), and see effect 

on predicted probability of the correct class ⇒
gives you a probability for each pixel

• For example, the first heat map (top) shows 

that occluding the face of the dog causes a 

maximum drop in the prediction probability

• Similar observations for other images
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Summary: ‘Don’t-disturb-the-model’ methods
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Summary: ‘Don’t-disturb-the-model’ methods
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Summary: ‘Don’t-disturb-the-model’ methods
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Summary: ‘Don’t-disturb-the-model’ methods
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Explaining CNNs: Early Methods
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Backpropagation to Image

• Question: Can we find an image that maximizes some class score?
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Backpropagation to Image

Simonyan, Vedaldi, and Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and 

Saliency Maps, ICLR Workshop 2014

1. Feed zeros as input.

2. Set the gradient of the scores vector to be [0, 0 , .. , 1 , ..., 0]. Then 

backprop to image. 

3. Do a small “image update”

4. Forward pass the image through the network. 

5. Go back to step 2.

48



Backpropagation to Image

arg max Sc(I) −  λ I 2
I

Simonyan, Vedaldi, and Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and 

Saliency Maps, ICLR Workshop 2014

• Formally, this optimization can be written as: 

• Here, Sc is the scores vector for class c, before applying softmax.
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Backpropagation to Image

Simonyan, Vedaldi, and Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and 

Saliency Maps, ICLR Workshop 2014

• Finding images that maximize some class score:
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Backpropagation to Image

Simonyan, Vedaldi, and Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and 

Saliency Maps, ICLR Workshop 2014

• Such optimization can in fact be done for arbitrary neurons in the network

• Repeat:
1. Forward an image

2. Set activations in a layer of interest to all zero, except 1.0 for a 

neuron of interest Backprop to image

3. Do an “image update”
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Visualizing the Data Gradient

Simonyan, Vedaldi, and Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and 

Saliency Maps, ICLR Workshop 2014

• Since the gradient on image data 

has three channels, visualise M 

such that:

• At each pixel, take absolute value 

and pick maximum across 

channels
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Visualizing the Data Gradient

Simonyan, Vedaldi, and Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and 

Saliency Maps, ICLR Workshop 2014

• Since the gradient on image data 

has three channels, visualise M 

such that:

• At each pixel, take absolute value 

and pick maximum across 

channels
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• GrabCut1, a segmentation method, can be applied to obtain the object 
mask from the data gradient

• Recall Graph-Cut segmentation - GrabCut is an extension/adaptation

1https://docs.opencv.org/3.4/d8/d83/tutorial py grabcut.html

Simonyan, Vedaldi, and Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and 

Saliency Maps, ICLR Workshop 2014

Visualizing the Data Gradient
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Image Reconstruction from Latent Representation

Given a CNN code (latent representation from a layer, say, FC7), is it possible 

to reconstruct the original image?
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Image Reconstruction from Latent Representation

Given a CNN code (latent representation from a layer, say, FC7), is it possible 

to reconstruct the original image?

Yes, solve an optimization problem such that: 

• The image’s code is similar to a given code

• It “looks natural” (image prior regularization)
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Image Reconstruction from Latent Representation

On AlexNet model
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Image Reconstruction from Latent Representation

Reconstructions from representations after last pooling layer 

(before first FC layer) in AlexNet
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Guided Backpropagation (also known as Deconvolution method)

Springenberg et al, Striving for Simplicity: The All Convolutional Net, ICLR Workshop 2015
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Guided Backpropagation (also known as Deconvolution method)

Springenberg et al, Striving for Simplicity: The All Convolutional Net, ICLR Workshop 2015
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Explaining CNNs: Class Attribution Map Methods
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Going Beyond Optimization-to-Image Methods
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Question

Can we know what a network was looking at, while predicting a class?

Going Beyond Optimization-to-Image Methods
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Class Activation Maps (CAM)

Zhou et al, Learning Deep Features for Discriminative Localization, CVPR 2016
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CAM: Examples

• Discriminative image regions used for classification of “Briard” and 

“Barbells” classes. 

• In the first set, the model is using the dog’s face to make the decision and 

• In the second set, it is using the weight plates.
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CAM: Examples

• Top 5 predicted classes and 

their corresponding CAMs. 

• Notice how the same 

activation maps produce 

different CAMs based on 

weights connecting features 

to individual classes
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CAM: Intuition

Zhou et al, Object Detectors emerge in Deep Scene CNNs, ICLR 2015

Convolutional units behave as object localizers even without supervision over 

objects’ location; this capability is lost if FC layers are used for classification

Receptive fields of convolutional units and their maximally activating image patch examples
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CAM: Comparison
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CAM: Pros and Cons

Advantages

• Is class discriminative (can localize objects without positional 

supervision). 

• Doesn’t require a backward pass unlike guided backprop or 

deconvolution
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CAM: Pros and Cons

Advantages

• Is class discriminative (can localize objects without positional 

supervision). 

• Doesn’t require a backward pass unlike guided backprop or 

deconvolution

Disadvantages

• Constraint on architecture is restrictive; may not be useful to explain 

complex tasks like image captioning or visual question answering (VQA)

• Model may trade off accuracy for interpretability 

• Need for retraining to explain trained models
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Gradient-weighted CAM (Grad-CAM)

Selvaraju et al, Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, ICCV 2017
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Gradient-weighted CAM (Grad-CAM)

Selvaraju et al, Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, ICCV 2017

Instead of the GAP, Grad CAM get the gradient value for the weight. 
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Gradient-weighted CAM (Grad-CAM)

Selvaraju et al, Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, ICCV 2017

Instead of the GAP, Grad CAM get the gradient value for the weight. 
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Guided Gradient-weighted CAM (Guided Grad-CAM)

Selvaraju et al, Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, ICCV 2017
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Gradient-weighted CAM (Grad-CAM)

Selvaraju et al, Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, ICCV 2017

• Grad-CAM does not need to rid off the FC layer. 

• It can be applied for every task where CAM could be only applied on the 

Classification.
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Grad-CAM: Example

• Grad-CAM maps are 

class-discriminative

• However, it is unclear

from this heat-map why 

the network predicts this 

particular instance as 

‘tiger cat’

• Can we do something 

about this?
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Guided Grad-CAM
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Grad-CAM: Counterfactual Explanations

• Negating the value of gradients 

used for calculation of

importance weights (wc ) causesk

• Removing/suppressing features 

occurring in such patches can 

improve model confidence

localization maps to show image 

patches that adversarially affect 

classification output
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Grad-CAM: Limitations

Chattopadhay et al, Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks, WACV 2018

• Inability to identify multiple instances of objects

• Unsatisfactory localization performance, especially under occlusion
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Grad-CAM++: Motivation

• Grad-CAM considers all pixel gradients equally when computing importance 

weights of activation maps
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• Grad-CAM considers all pixel gradients equally when computing importance 

weights of activation maps

• This can suppress activation maps with comparatively lesser spatial footprint
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Grad-CAM++: Motivation

• Grad-CAM considers all pixel gradients equally when computing importance 

weights of activation maps

• This can suppress activation maps with comparatively lesser spatial footprint

• Since instances of objects in an image tend to have different shapes and 

orientations, some of them can fade away
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Grad-CAM++: Motivation

• Grad-CAM considers all pixel gradients equally when computing importance 

weights of activation maps

• This can suppress activation maps with comparatively lesser spatial footprint

• Since instances of objects in an image tend to have different shapes and 

orientations, some of them can fade away

• This can be corrected by using weighted average of pixel-wise gradients

• where relu to focus on positive gradients and α is the pixel-wise weight. 
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Grad-CAM++: Intuition
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Grad-CAM++: Methodology

For a particular class c and activation map k, the pixel-wise weight αkc at pixel position

(i, j) can be calculated as:

NOTE: Both a,b and i,j are iterators on the same activation map. They are only used to 

avoid confusion. 

Section 3.1 to 3.4, Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks 91



Grad-CAM++: Methodology

For a particular class c and activation map k, the pixel-wise weight αkc at pixel position

(i, j) can be calculated as:

NOTE: Both a,b and i,j are iterators on the same activation map. They are only used to 

avoid confusion. 

Final localization map LGrad−CAM ++ (similar to that of GradCAM):

where

Section 3.1 to 3.4, Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks 92



Grad-CAM++: Example
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Grad-CAM++: Examples for Class Localization
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Grad-CAM++: Examples for Multiple Occurrences
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Readings

• Lecture Notes of CS231n, Stanford

• Deep Visualization Toolkit demo video and webpage by J. Yosinski et al.

• To see high-resolution t-SNE visualizations, visit here To know more about t-SNE, visit 

here

• Simonyan, Vedaldi, and Zisserman, Deep Inside Convolutional Networks: Visualising

Image Classification Models and Saliency Maps, ICLR Workshop 2014

• Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014

• Springenberg et al, Striving for Simplicity: The All Convolutional Net, ICLR Workshop 

2015

• Zhou et al, Learning Deep Features for Discriminative Localization, CVPR 2016

• Selvaraju et al, Grad-CAM: Visual Explanations from Deep Networks via Gradient-based

Localization, ICCV 2017

Chattopadhyay et al, Grad-CAM++: Improved Visual Explanations for Deep

Convolutional Networks, WACV 2018
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Thank you 

Image Source: http://pluspng.com/best-of-luck-png-5072.html

QUESTIONS?
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