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Outline: Explaining CNNs

* Visualization Methods
» Visualize Filters/Kernels (First Layer)
* Visualize the Representation Space (Last Layer)
* Visualize Activations
* Visualize Maximally Activating Image Patches
* Occlusion Visualization
+ Early Methods
+ Backpropagation to Image
* Visualizing the Data Gradient
+ Image Reconstruction from Latent Representation
» Guided Backpropagation (Deconvolution method)
» Class Attribution Map Methods
» Class Activation Maps (CAM)
* Gradient-weighted CAM (Grad-CAM) and Guided Grad-CAM
- Grad-CAM++ e



Explaining CNNs: Visualization Methods



Visualize Filters/Kernels (First Layer)
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AlexNet:
64 x3x11x 11

Krizhevsky, One weird trick for parallelizing convolutional neural networks, 2014
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Visualize Filters/Kernels (First Layer)

AlexNet:
64 x3x11x11
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A Closer Look (AlextNet)

Fan et al.(arxiv:1904.05526)

Krizhevsky, One weird trick for parallelizing convolutional neural networks, 2014 @



Visualize Filters/Kernels (First Layer)

AlexNet:
64 x3x11x11

BRSNS
T 1

A Closer Look (AlextNet) ResNet-18: ResNet-101: DenseNet-121:
Fan et al.(arxiv:1904.05526) 64 X 3 X 7 X 7 64 X 3 X 7 % 7 64 X 3 X 7 X 7

Krizhevsky, One weird trick for parallelizing convolutional neural networks, 2014
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Visualize Filters/Kernels (First Layer)

* You can visualize the
kernels of higher layers
but it is just not
interesting
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Visualize Filters/Kernels (First Layer)
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Visualize Filters/Kernels (First Layer)

The Gabor-like filters fatigue
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L
Visualize the Representation Space (Last Layer)

+ 4096-dimensional feature vector for an image (layer immediately before the
classifier)
* Run the network on many images, collect the feature vectors
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Visualize the Representation Space (Last Layer)

* Visualize the “space” of FC7 feature
vectors by reducing dimensionality of
vectors from 4096 to 2 dimensions
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Visualize the Representation Space (Last Layer)

» Visualize the “space” of FC7 feature
vectors by reducing dimensionality of
vectors from 4096 to 2 dimensions

* Use any dimensionality reduction
algorithm

» Simple algorithm: Principal Component
Analysis (PCA)

* More complex: t-SNE (right)
(t-distributed Stochastic Neighbor Embedding)

van der Maaten and Hinton, Visualizing High-Dimensional Data Using t-SNE, Journal of Machine Learning Research,
2008



t-SNE Visualization

» Images that are nearby each other are also close in the CNN representation
space, which implies that the CNN "sees” them as being very similar

e R ol =

* Notice that the similarities are more often class-based and semantic, rather
than pixel and color-based. @



Visualize Activations

Conv5 feature map is 128 x 13 x 13; Visualize as 128 13 x 13 grayscale images

jon", ICML DL Workshop 2014

Figure copyright: Jason Yosinski, 2014.

o
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Visualize Maximally Activating Image Patches

+ Consider a CNN, and a single neuron in any of its intermediate layers
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+ Consider a CNN, and a single neuron in any of its intermediate layers
* Feed images to the CNN and identify all images which cause that particular
neuron to fire
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Visualize Maximally Activating Image Patches

Consider a CNN, and a single neuron in any of its intermediate layers

Feed images to the CNN and identify all images which cause that particular
neuron to fire

We can then easily trace back to the patch in the image which causes that
neuron to fire




Visualize Maximally Activating Image Patches

* Repeating this for others neurons in the CNN shows us a pattern

aﬂﬁ#ha_WAanm;

N =

Rich feature hierarchies for accurate object detection and semantic segmentation by Ross Girshick et al. @



Visualize Maximally Activating Image Patches

* Repeating this for others neurons in the CNN shows us a pattern

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015.
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller



Occlusion Experiments

+ Typically, we are interested in understanding
which portions of an image are responsible for
maximizing probability of a certain class

Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014



Occlusion Experiments

+ Typically, we are interested in understanding
which portions of an image are responsible for
maximizing probability of a certain class

» Occlude (gray out) different patches in the
image (centered on each pixel), and see effect
on predicted probability of the correct class =
gives you a probability for each pixel

Probability of correct
class

Input image

Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014
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» Occlude (gray out) different patches in the
image (centered on each pixel), and see effect
on predicted probability of the correct class =
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Occlusion Experiments

+ Typically, we are interested in understanding
which portions of an image are responsible for
maximizing probability of a certain class

» Occlude (gray out) different patches in the
image (centered on each pixel), and see effect
on predicted probability of the correct class =
gives you a probability for each pixel

» For example, the first heat map (top) shows
that occluding the face of the dog causes a
maximum drop in the prediction probability

Probability of correct

» Similar observations for other images Input image dase

Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014
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Summary: ‘Don’t-disturb-the-model” methods




L
Summary: ‘Don’t-disturb-the-model” methods

Conv



Summary: ‘Don’t-disturb-the-model” methods

Visualizing the filter/kernels
(raw weights)



Summary: ‘Don’t-disturb-the-model” methods

Only interpretable at the first layer!
Not interesting enough for higher layers!

Visualizing the filter/kernels | 4 ) " i
(raw weights) _ i 6 ﬂ’ &



Summary: ‘Don’t-disturb-the-model” methods

Only interpretable at the first layer!
Not interesting enough for higher layers!

Visualizing the filter/kernels &l = - & -
(raw weights) v 5@’ i

The Gabor-like filter fatigue




Summary: ‘Don’t-disturb-the-model” methods

Visualizing the filter/kernels
(raw weights)

Conv Pool



Summary: ‘Don’t-disturb-the-model” methods

Visualize patches that
maximally activate neuron
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Visualizing the filter/kernels
(raw weights)




Summary: ‘Don’t-disturb-the-model” methods

Visualize patches that
maximally activate neuron

1.0y i 1 ( 0 o

Visualizing the filter/kernels
(raw weights)

Pool



Summary: ‘Don’t-disturb-the-model” methods

Visualize patches that
maximally activate neuron
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Visualizing the filter/kernels
(raw weights)
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Visualizing the representation
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Visualize patches that
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Visualize patches that

10
maximally activate neuron ﬁ
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(raw weights)

Visualizing the representation
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Summary: ‘Don’t-disturb-the-model” methods

Visualize patches that

K
maximally activate neuron ‘

-

Visualizing the filter/kernels
(raw weights)
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Visualizing the representation
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Summary: ‘Don’t-disturb-the-model” methods
Visualize patches that L% 2
maximally activate neuron ‘

gl ] -‘

Visualizing the filter/kernels
(raw weights)

Visualizing the representation



Explaining CNNs: Early Methods




S
Backpropagation to Image

* Question: Can we find an image that maximizes some class score?



S
Backpropagation to Image

1. Feed zeros as input.
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2. Set the gradient of the scores vectortobe [0,0, .., 1, ..., 0]. Then
backprop to image.

3. Do a small “image update”

4. Forward pass the image through the network.

5. Go back to step 2.

Simonyan, Vedaldi, and Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps, ICLR Workshop 2014 o
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Backpropagation to Image

zero image S—

* Formally, this optimization can be written as:
arg max S.(I) — M| I||2
I

* Here, Scis the scores vector for class ¢, before applying softmax.

Simonyan, Vedaldi, and Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps, ICLR Workshop 2014




Backpropagation to Image

+ Finding images that maximize some class score:

kit fox
Simonyan, Vedaldi, and Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and

limousine
Saliency Maps, ICLR Workshop 2014 @




Backpropagation to Image

+ Such optimization can in fact be done for arbitrary neurons in the network

s\l —» . |
|l | \T1 ’( > |1 [
27 3
mput|| | 5 E
e = -
(RGB)
\ 56
Ma Max
Stride pooling pooling
24\ | g %

* Repeat: :
1. Forward an image
2. Set activations in a layer of interest to all zero, except 1.0 for a
neuron of interest Backprop to image
3. Do an “image update”

Simonyan, Vedaldi, and Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps, ICLR Workshop 2014 @




Visualizing the Data Gradient

+ Since the gradient on image data
has three channels, visualise M
such that:

ﬂ/fij — mELX IVISC(I)|('5=jaC)

+ At each pixel, take absolute value
and pick maximum across
channels

Simonyan, Vedaldi, and Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps, ICLR Workshop 2014 @



Visualizing the Data Gradient

+ Since the gradient on image data
has three channels, visualise M
such that:

ﬂf@j = m;iX ‘VISC(I”(-LJ.C)

+ At each pixel, take absolute value
and pick maximum across
channels

Simonyan, Vedaldi, and Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps, ICLR Workshop 2014 @



Visualizing the Data Gradient

« GrabCut', a segmentation method, can be applied to obtain the object
mask from the data gradient
» Recall Graph-Cut segmentation - GrabCut is an extension/adaptation

Thttps://docs.opencv.org/3.4/d8/d83/tutorial py grabcut.html
Simonyan, Vedaldi, and Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps, ICLR Workshop 2014 @



Image Reconstruction from Latent Representation

Given a CNN code (latent representation from a layer, say, FC7), is it possible
to reconstruct the original image?




Image Reconstruction from Latent Representation

Given a CNN code (latent representation from a layer, say, FC7), is it possible
to reconstruct the original image?

! l:( e = I
a s! " v' : 2 NE\‘ 2l ’iy J'L‘ 1 ’,} ':, Tl |:|
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(RG8)

siride
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Yes, solve an optimization problem such that:
+ The image’s code is similar to a given code
* It “looks natural” (image prior regularization)
x* = argmin [|®(z) — Po||® + AR(x)

xCRH*xWxC @
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Image Reconstruction from Latent Representation

On AlexNet model

original image .
reconstructions

from the 1000
log probabilities
for ImageNet
(ILSVRC)
classes




Image Reconstruction from Latent Representation

Reconstructions from representations after last pooling layer
(before first FC layer) in AlexNet




Guided Backpropagation (also known as Deconvolution method)

Springenberg et al, Striving for Simplicity: The All Convolutional Net, ICLR Workshop 2015 @



Guided Backpropagation (also known as Deconvolution method)

!@fia@aﬂﬂi

Springenberg et al, Striving for Simplicity: The All Convolutional Net, ICLR Workshop 2015

a) Feed image into net.




Guided Backpropagation (also known as Deconvolution method)

1
a) Feed image into net. Forward pass o1 1 EEE 1o
Input image * > " 2|52 2|0
312 1 [5]a] o]z

activation: £ = relu(f!) = max(f!,0) 1

.

b) Pick a layer, set the
gradient there to zero except
for the neuron of interest.

Springenberg et al, Striving for Simplicity: The All Convolutional Net, ICLR Workshop 2015
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Guided Backpropagation (also known as Deconvolution method)

| -
a) Feed image into net. b) forwardpass . T3] | S S
Input image 1* —.H> ¢ EEE] — [Elele
312 1 [G]E]A olz2]s
activation: S = relu(f!) = max(f},0) 1
.
b) Pick a layer, set the i =3
gradient there to zero except ¥ ’I
for the neuron of interest. gar-
|
Backward pass 3 7 2
Reconstructed \ o[o] | 2lel d_ B
c) image ® < >Tz17% 1 [Sletel « [l
I 013 2|1)3
¢) Backprop to image. backpropagation: Jt{ = (f] > 0) - B!, where " = ';’—,,"'— 1

Springenberg et al, Striving for Simplicity: The All Convolutional Net, ICLR Workshop 2015 @



a) Feed image into net.

b) Pick a layer, set the
gradient there to zero except
for the neuron of interest.

¢) Backprop to image. backpropagation: /¢ = (f} > 0) - K™, where RL*!

Guided Backpropagation (also known as Deconvolution method)

Forward pass °

>

w -

2

S = relu(f!) = max(f},0)

Backward pass
7 o M e g R

 R' | . P
L e ool

02

am

‘-)Tﬁ

Springenberg et al, Striving for Simplicity: The All Convolutional Net, ICLR Workshop 2015




Guided Backpropagation (also known as Deconvolution method)

Backward pass
Reconstructed ~ N W
image ®'

|
R “w_ 0
ol R = (f! > 0)- R*, where RI*! :'—f,—,
|
|

Springenberg et al, Striving for Simplicity: The All Convolutional Net, ICLR Workshop 2015




Guided Backpropagation (also known as Deconvolution method)

I
Backward pass ! T |

Reconstructed = mm [ oJo| | bac Ro=(f' > 0)- R, where R -j.’
image # o L g 0 L olz1” ! af! 1
1 1

Backward pass
Reconstructed ofo

°
~

! I
" | guided =(f'>0)- L piet
image & . * | backpropagation: B=ti>9 o |
1
! I

Springenberg et al, Striving for Simplicity: The All Convolutional Net, ICLR Workshop 2015 @



Guided Backpropagation (also known as Deconvolution method)

Backward pass

Reconstructed
image ®'

T

' :
of : bac R =(f! -lll»ﬂ‘f".wh--mlﬂ"':”—ﬁ: "
1 1

Backward pass
Reconstructed ofo

°

: I
-l guided R=(>0)- LR
image & & = [t | backpropagation: ' 5i>0) i 1
|
! I

Springenberg et al, Striving for Simplicity: The All Convolutional Net, ICLR Workshop 2015




Explaining CNNs: Class Attribution Map Methods



Going Beyond Optimization-to-Image Methods

Visualize the data gradient. (Note that the data has 3 channels)

©,

Mij = maxe |wh,(i,j,c)| 1) Feed in zeros.

2) Forward the image
through the network.

3) Set the gradient of the
score vector to be [0,0..,1,..0]
and backprop to image.

arg max 5 ()] - Al 7|3

[Score for class ¢ (before softmax)]
4) Do a small image update.

Find images that maximize some class score. 5) Go back to 2.




Going Beyond Optimization-to-Image Methods

Visualize the data gradient. (Note that the data has 3 channels)

J‘Iij = maXc |wh'(i»jy(3)| 1) Feed in zeros.

Question
Can we know what a network was looking at, while predicting a class?

score vect(-)r to be [0,0,.,1,..0]
and backprop to image.

arg max 5 ()] - Al 7|3

[Score for class ¢ (before softmax)]

\;

=T T BT

4) Do a small image update.

Find images that maximize some class score. 5) Go back to 2.




Class Activation Maps (CAM)

(GAP - Global Average Pooling)

3Australian
terrier

Class Activation Mapping

Class
Activation
Map

(Australian terrier)

Wi+

T Wo=

Zhou et al, Learning Deep Features for Discriminative Localization, CVPR 2016 @



CAM: Examples

» Discriminative image regions used for classification of “Briard” and
“Barbells” classes.

* In the first set, the model is using the dog’s face to make the decision and

* Inthe second set, it is using the weight plates. @



CAM: Examples

» Top 5 predicted classes and
their corresponding CAMs.

* Notice how the same
activation maps produce
different CAMs based on
weights connecting features
to individual classes

@



CAM: Intuition

Convolutional units behave as object localizers even without supervision over
objects’ location; this capability is lost if FC layers are used for classification

pool2 conv4 pool5

ESSHYE- A ETEEE BSENY
1| [“11“ BTl B SEEsA =
g 44 =5 TP

:ENN\ BPPEE Baws HZ{";KIIIB%
d ===1 | 4" %1 o]
‘Bz« HOD RBLCHE I bﬂi

Receptive fields of convolutional units and their maximally activating image patch examples

pooll

Zhou et al, Object Detectors emerge in Deep Scene CNNs, ICLR 2015 @



CAM: Comparison

French horn French horn French horn French horn

0.934 0.06 0.966 :: 0.326 0.966

EGEN agaric
ot

< (D

GoogLeNet-GAP  VGG-GAP AlexNet-GAP GoogLeNet

Backpro AlexNet Backpro GooglLeNet

(4]
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CAM: Pros and Cons

Advantages
* Is class discriminative (can localize objects without positional

supervision).
* Doesn’t require a backward pass unlike guided backprop or
deconvolution



L
CAM: Pros and Cons

Advantages
* Is class discriminative (can localize objects without positional

supervision).
* Doesn’t require a backward pass unlike guided backprop or
deconvolution

Disadvantages
» Constraint on architecture is restrictive; may not be useful to explain

complex tasks like image captioning or visual question answering (VQA)
* Model may trade off accuracy for interpretability
* Need for retraining to explain trained models



Gradient-weighted CAM (Grad-CAM)

Rectified Conv FC Layer
Feature Maps Activations

A
(2}

@ | ¢ | Tiger Cat

Grad-CAM

Selvaraju et al, Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, ICCV 2017 @



Gradient-weighted CAM (Grad-CAM)

Instead of the GAP, Grad CAM get the gradient value for the weight.

Rectified Conv FC Layer
Feature Maps Activations

‘- c | Tiger Cat

Grad-CAM

Selvaraju et al, Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, ICCV 2017




Gradient-weighted CAM (Grad-CAM)

Instead of the GAP, Grad CAM get the gradient value for the weight.

Rectified Conv FC Layer
global average pooling Feature Maps Activations

. 1 Ay
——

gradients via backprop

LGra.cam = RelU (Z QEAR)
B

e —

linear combination

‘- c | Tiger Cat

Grad-CAM

Selvaraju et al, Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, ICCV 2017 @



Guided Gradient-weighted CAM (Guided Grad-CAM)

A

Guided Backpropagation

IGuided Backpropagation

Guided Grad-CAM

Grad-CAM

Rectified Conv
Feature Maps

FC Layer
Activations

Tiger Cat




Gradient-weighted CAM (Grad-CAM)

o — [ ! K < | Tiger Cat|
i —— Activations AE

b= Image Classification

FC Layers Yy

Guided Backpropagation (or)

Rectified Conv

R,
Feature Maps ,_':‘, i ‘:,::A éa g ]
1 Acatlying on || f= Image Captioning

Any il the ground

i Task-specific| «
T ‘:‘{ Sl (on)
Guided Grad-CAM
A Is there a cat? Q Visual
PR o RNNJLSTM FeLayer Question Answering
Backprop till conv '+, <
Grad-CAM R (Ol')

+ Grad-CAM does not need to rid off the FC layer.
* It can be applied for every task where CAM could be only applied on the
Classification.

Selvaraju et al, Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, ICCV 2017




Grad-CAM: Example

Grad-CAM ‘Cat’ ResNet Grad-CAM ‘Cat’

[

» Grad-CAM maps are
class-discriminative

* However, it is unclear
from this heat-map why
the network predicts this
particular instance as
‘tiger cat’

+ Can we do something
about this?

Grad-CAM ‘Dog’ ResNet Grad-CAM ‘Dog’




Guided Grad-CAM

>
o .

Guided Backprop Grad-CAM Guided Grad-CAM
(fine-grained details) (Class discriminative) (Fine-grained +Class discrimil

Dog

Tiger cat




Grad-CAM: Counterfactual Explanations

Negating the value of gradients
used for calculation of
importance weights (w9) causes
localization maps to show image
patches that adversarially affect
classification output

wi = ZZZ EJA’”

Removing/suppressing features
occurring in such patches can
improve model confidence

(d) Original Image

(b) Grad-CAM for Cat  (c) Grad-CAM negative ex-
planation for Cat

(e) Grad-CAM for Dog  (f) Grad-CAM negative ex-
planation for Dog




Grad-CAM: Limitations

* Inability to identify multiple instances of objects
» Unsatisfactory localization performance, especially under occlusion

Original Image  Guided Grad-CAM Grad-CAM Original Image  Guided Grad-CAM Grad-CAM

| U
sy

T A\ Y

ke dpT
o

Chattopadhay et al, Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks, WACV 2018
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Grad-CAM++: Motivation

* Grad-CAM considers all pixel gradients equally when computing importance
weights of activation maps

.1 0y°
e EZXJ: azfj
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e EZXJ: azfj

» This can suppress activation maps with comparatively lesser spatial footprint
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* Grad-CAM considers all pixel gradients equally when computing importance
weights of activation maps

.1 0y°
e EZXJ: az;g.

» This can suppress activation maps with comparatively lesser spatial footprint
» Since instances of objects in an image tend to have different shapes and
orientations, some of them can fade away




L
Grad-CAM++: Motivation

* Grad-CAM considers all pixel gradients equally when computing importance
weights of activation maps

. 1 y°
Y = EZXJ: az;g.

» This can suppress activation maps with comparatively lesser spatial footprint

+ Since instances of objects in an image tend to have different shapes and
orientations, some of them can fade away

» This can be corrected by using weighted average of pixel-wise gradients

wy, —ZZ& relu lefk )

» where relu to focus on positive gradients and a is the pixel-wise weight.




Grad-CAM++: Intuition

Feature Map (A7)

"

—

Feature Map (A?)
Input Image (1)

Dark regions indicate
presence of object

Feature Map (A%)

Dark regions indicate
detection of abstract
visual features

Y

=

k]
(k]

1]

[iE]

[ibi]

Saliency Map (Ljao.con)

-

Saliency Map (L camis)




Grad-CAM++: Methodology

@ For a particular class ¢ and activation map k, the pixel-wise weight a¢ at pixel position
(i, j) can be calculated as: 92y
ke (0AF;)?

aij - 92y c 93yc
2(844“ )2 +Za Zb b{(aAk )J}

NOTE: Both a,b and i,j are iterators on the same activation map. They are only used to
avoid confusion.

Section 3.1 to 3.4, Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks @



Grad-CAM++: Methodology

@ For a particular class ¢ and activation map k, the pixel-wise weight a¢ at pixel position
(i, j) can be calculated as: 92y
ke (0AF;)?

aij - 92y c 93yc
2(844“ )2 +Za Zb b{(aAk )J}

NOTE: Both a,b and i,j are iterators on the same activation map. They are only used to
avoid confusion.
o Final localization map Lgrag-cam++ (similar to that of GradCAM):

Li; = 'relu(z wi . AR)

where wk_ZZa relu( Xk)

Section 3.1 to 3.4, Grad-CAM++: Improved Visual Explanatlons for Deep Convolutional Networks @




Grad-CAM++: Example




Grad-CAM++: Examples for Class Localization

Original Image E° Grad-CAM E° Grad-CAM++ Original Image E° Grad-CAM E° Grad-CAM++

Hare
Grey Whale

Grey Whale American Lobster
Kite

Go-Kart

Necklace
Eel




Grad-CAM++: Examples for Multiple Occurrences

Original Image E° Grad-CAM E° Grad-CAM++ Original Image E° Grad-CAM E° Grad-CAM++

Table Lamp
Kite

French Loaf
Border Collie

Greenhouse

Water Buffalo
Tiger Beetle




Readings

Lecture Notes of CS231n, Stanford
Deep Visualization Toolkit demo video and webpage by J. Yosinski et al.

To see high-resolution t-SNE visualizations, visit here To know more about t-SNE, visit
here

Simonyan, Vedaldi, and Zisserman, Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps, ICLR Workshop 2014

Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014
Springenberg et al, Striving for Simplicity: The All Convolutional Net, ICLR Workshop
2015

Zhou et al, Learning Deep Features for Discriminative Localization, CVPR 2016
Selvaraju et al, Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
Localization, ICCV 2017

Chattopadhyay et al, Grad-CAM++: Improved Visual Explanations for Deep
Convolutional Networks, WACV 2018 @
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