

Computer Arithmetic

Arithmetic & Logic Unit

• Does the calculations

• Everything else in the computer is there to
service this unit

• Handles integers

• May handle floating point (real) numbers

• May be separate FPU (maths co-processor)

• May be on chip separate FPU (486DX +)

ALU Inputs and Outputs

Integer Representation

• Only have 0 & 1 to represent everything

• Positive numbers stored in binary

—e.g. 41=00101001

• No minus sign

• No period

• Sign-Magnitude

• Two’s compliment

Sign-Magnitude

• Left most bit is sign bit

• 0 means positive

• 1 means negative

• +18 = 00010010

• -18 = 10010010

• Problems

—Need to consider both sign and magnitude in
arithmetic

—Two representations of zero (+0 and -0)

Two’s Compliment

• +3 = 00000011

• +2 = 00000010

• +1 = 00000001

• +0 = 00000000

• -1 = 11111111

• -2 = 11111110

• -3 = 11111101

Benefits

• One representation of zero

• Arithmetic works easily (see later)

• Negating is fairly easy

—3 = 00000011

—Boolean complement gives 11111100

—Add 1 to LSB 11111101

Geometric Depiction of Twos

Complement Integers

Negation Special Case 1

• 0 = 00000000

• Bitwise not 11111111

• Add 1 to LSB +1

• Result 1 00000000

• Overflow is ignored, so:

• - 0 = 0

Negation Special Case 2

• -128 = 10000000

• bitwise not 01111111

• Add 1 to LSB +1

• Result 10000000

• So:

• -(-128) = -128 X

• Monitor MSB (sign bit)

• It should change during negation

Range of Numbers

• 8 bit 2s compliment

—+127 = 01111111 = 27 -1

— -128 = 10000000 = -27

• 16 bit 2s compliment

—+32767 = 011111111 11111111 = 215 - 1

— -32768 = 100000000 00000000 = -215

Conversion Between Lengths

• Positive number pack with leading zeros

• +18 = 00010010

• +18 = 00000000 00010010

• Negative numbers pack with leading ones

• -18 = 10010010

• -18 = 11111111 10010010

• i.e. pack with MSB (sign bit)

Addition and Subtraction

• Normal binary addition

• Monitor sign bit for overflow

• Take twos compliment of substahend and add to
minuend

—i.e. a - b = a + (-b)

• So we only need addition and complement
circuits

Hardware for Addition and Subtraction

Multiplication

• Complex

• Work out partial product for each digit

• Take care with place value (column)

• Add partial products

Multiplication Example

• 1011 Multiplicand (11 dec)

• x 1101 Multiplier (13 dec)

• 1011 Partial products

• 0000 Note: if multiplier bit is 1 copy

• 1011 multiplicand (place value)

• 1011 otherwise zero

• 10001111 Product (143 dec)

• Note: need double length result

Chapter 3 — Arithmetic for Computers — 18

Multiplication

• Start with long-multiplication approach

1000
× 1001

1000
0000
0000
1000
1001000

Length of product is

the sum of operand

lengths

multiplicand

multiplier

product

Chapter 3 — Arithmetic for Computers — 19

Multiplication Hardware

Initially 0

Unsigned Binary Multiplication

Execution of Example

Flowchart for Unsigned Binary

Multiplication

Chapter 3 — Arithmetic for Computers — 23

Optimized Multiplier

• Perform steps in parallel: add/shift

 One cycle per partial-product addition

 That’s ok, if frequency of multiplications is low

Multiplying Negative Numbers

• This does not work!

• Solution 1

—Convert to positive if required

—Multiply as above

—If signs were different, negate answer

• Solution 2

—Booth’s algorithm

Booth’s Algorithm

Example of Booth’s Algorithm

Chapter 3 — Arithmetic for Computers — 27

Faster Multiplier

• Uses multiple adders

—Cost/performance tradeoff

 Can be pipelined

 Several multiplication performed in parallel

Division

• More complex than multiplication

• Negative numbers are really bad!

• Based on long division

Chapter 3 — Arithmetic for Computers — 29

Division of Unsigned Binary Integers

• Check for 0 divisor

• Long division approach
— If divisor ≤ dividend bits

– 1 bit in quotient, subtract

— Otherwise
– 0 bit in quotient, bring down next

dividend bit

• Restoring division
— Do the subtract, and if remainder

goes < 0, add divisor back

• Signed division
— Divide using absolute values

— Adjust sign of quotient and remainder
as required

1001
1000 1001010

-1000
10
101
1010
-1000

10

n-bit operands yield n-bit

quotient and remainder

quotient

dividend

remainder

divisor

Chapter 3 — Arithmetic for Computers — 30

Division Hardware

Initially dividend

Initially divisor

in left half

Chapter 3 — Arithmetic for Computers — 31

Optimized Divider

• One cycle per partial-remainder subtraction

• Looks a lot like a multiplier!

—Same hardware can be used for both

Flowchart for Unsigned Binary Division

Required Reading

• Stallings Chapter 9

• IEEE 754 on IEEE Web site

