Computer Organization and Architecture

Under Graduate Course (B. Tech-Information Technology, 2nd Semester) Jan 2020-July 2020

By

Dr. Satish Kumar Singh

Associate Professor Indian Institute of Information Technology, Allahabad Email: sk.singh@iiita.ac.in

Computer Arithmetic

Arithmetic & Logic Unit

- Does the calculations
- Everything else in the computer is there to service this unit
- Handles integers
- May handle floating point (real) numbers
- May be separate FPU (maths co-processor)
- May be on chip separate FPU (486DX +)

ALU Inputs and Outputs

Integer Representation

- Only have 0 & 1 to represent everything
- Positive numbers stored in binary
 - -e.g. 41=00101001
- No minus sign
- No period
- Sign-Magnitude
- Two's compliment

Sign-Magnitude

- Left most bit is sign bit
- 0 means positive
- 1 means negative
- +18 = 00010010
- -18 = 10010010
- Problems
 - Need to consider both sign and magnitude in arithmetic
 - —Two representations of zero (+0 and -0)

Two's Compliment

- +3 = 00000011
- +2 = 00000010
- +1 = 0000001
- +0 = 00000000
- -1 = 11111111
- -2 = 11111110
- -3 = 11111101

Benefits

- One representation of zero
- Arithmetic works easily (see later)
- Negating is fairly easy
 - -3 = 0000011
 - -Boolean complement gives 11111100

11111101

—Add 1 to LSB

Geometric Depiction of Twos Complement Integers

Negation Special Case 1

- 0 = 00000000
- Bitwise not 11111111
- Add 1 to LSB +1
- Result 1 0000000
- Overflow is ignored, so:
- - 0 = 0 $\sqrt{}$

Negation Special Case 2

- -128 = 10000000
- bitwise not 01111111
- Add 1 to LSB +1
- Result 1000000
- So:
- -(-128) = -128 X
- Monitor MSB (sign bit)
- It should change during negation

Range of Numbers

- 8 bit 2s compliment
 - $-+127 = 01111111 = 2^7 1$
 - $-128 = 10000000 = -2^{7}$
- 16 bit 2s compliment
 - $-+32767 = 0111111111111111111 = 2^{15} 1$
 - $-32768 = 10000000 \ 0000000 = -2^{15}$

Conversion Between Lengths

- Positive number pack with leading zeros
- +18 = 00010010
- +18 = 00000000 00010010
- Negative numbers pack with leading ones
- -18 = 10010010
- -18 = 11111111 10010010
- i.e. pack with MSB (sign bit)

Addition and Subtraction

- Normal binary addition
- Monitor sign bit for overflow
- Take twos compliment of substahend and add to minuend

$$-i.e. a - b = a + (-b)$$

 So we only need addition and complement circuits

Hardware for Addition and Subtraction

OF = overflow bit SW = Switch (select addition or subtraction)

Multiplication

- Complex
- Work out partial product for each digit
- Take care with place value (column)
- Add partial products

Multiplication Example

- 1011 Multiplicand (11 dec)
- x 1101 Multiplier (13 dec)
- 1011 Partial products
- <u>0000</u> Note: if multiplier bit is 1 copy
- 1011 multiplicand (place value)
- 1011 otherwise zero
- 10001111 Product (143 dec)
- Note: need double length result

Multiplication

• Start with long-multiplication approach

Multiplication Hardware

Unsigned Binary Multiplication

(a) Block Diagram

С	А	Q	Μ		
0	0000	1101	1011	Initial	l Values
0	1011	1101	1011	Add	First
0	0101	1110	1011	Shift	Cycle
0	0010	1111	1011	Shift	Second Cycle
0	1101	1111	1011	Add	Third
0	0110	1111	1011	Shift	Cycle
1	0001	1111	1011	Add	Fourth
0	1000	1111	1011	Shift	🕻 Cycle

Flowchart for Unsigned Binary Multiplication

Optimized Multiplier

• Perform steps in parallel: add/shift

One cycle per partial-product addition
That's ok, if frequency of multiplications is low

Multiplying Negative Numbers

- This does not work!
- Solution 1
 - -Convert to positive if required
 - -Multiply as above
 - —If signs were different, negate answer
- Solution 2
 - -Booth's algorithm

А	Q	Q_{-1}	М		
0000	0011	0	0111	Initial Values	
1001	0011	0	0111	A A – M] First	
1100	1001	1	0111	Shift 🔓 Cycle	
1110	0100	1	0111	Shift Secon Cycle	d
0101	0100	1	0111	A A + M ? Third	
0010	1010	0	0111	Shift Cycle	
0001	0101	0	0111	Shift } Fourt	h

Faster Multiplier

Uses multiple adders
Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

Division

- More complex than multiplication
- Negative numbers are really bad!
- Based on long division

Division of Unsigned Binary Integers

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor \leq dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!

—Same hardware can be used for both

Flowchart for Unsigned Binary Division

Required Reading

- Stallings Chapter 9
- IEEE 754 on IEEE Web site