

IEEE Floating Point Representation

Real Numbers

• Numbers with fractions

• Could be done in pure binary

—1001.1010 = 24 + 20 +2-1 + 2-3 =9.625

• Where is the binary point?

• Fixed?

—Very limited

• Moving?

—How do you show where it is?

Chapter 3 — Arithmetic for Computers — 4

Floating Point

• Representation for non-integral numbers

—Including very small and very large numbers

• Like scientific notation

—–2.34 × 1056

—+0.002 × 10–4

—+987.02 × 109

• In binary

—±1.xxxxxxx2 × 2yyyy

• Types float and double in C

normalized

not normalized

Chapter 3 — Arithmetic for Computers — 5

Floating Point Standard

• Defined by IEEE Std 754-1985

• Developed in response to divergence of representations

—Portability issues for scientific code

• Now almost universally adopted

• Two representations

—Single precision (32-bit)

—Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 6

IEEE Floating-Point Format

• S: sign bit (0  non-negative, 1  negative)
• Normalize significand: 1.0 ≤ |significand| < 2.0

— Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

— Significand is Fraction with the “1.” restored

• Exponent: excess representation: actual exponent + Bias
— Ensures exponent is unsigned
— Single: Bias = 127; Double: Bias = 1203

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x 

Chapter 3 — Arithmetic for Computers — 7

Single-Precision Range

• Exponents 00000000 and 11111111 reserved

• Smallest value

—Exponent: 00000001
 actual exponent = 1 – 127 = –126

—Fraction: 000…00  significand = 1.0

—±1.0 × 2–126 ≈ ±1.2 × 10–38

• Largest value

—exponent: 11111110
 actual exponent = 254 – 127 = +127

—Fraction: 111…11  significand ≈ 2.0

—±2.0 × 2+127 ≈ ±3.4 × 10+38

Chapter 3 — Arithmetic for Computers — 8

Double-Precision Range

• Exponents 0000…00 and 1111…11 reserved

• Smallest value

—Exponent: 00000000001
 actual exponent = 1 – 1023 = –1022

—Fraction: 000…00  significand = 1.0

—±1.0 × 2–1022 ≈ ±2.2 × 10–308

• Largest value

—Exponent: 11111111110
 actual exponent = 2046 – 1023 = +1023

—Fraction: 111…11  significand ≈ 2.0

—±2.0 × 2+1023 ≈ ±1.8 × 10+308

Chapter 3 — Arithmetic for Computers — 9

Floating-Point Precision

• Relative precision

—all fraction bits are significant

—Single: approx 2–23

– Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal digits of precision

—Double: approx 2–52

– Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

Chapter 3 — Arithmetic for Computers — 10

Floating-Point Example

• Represent –0.75

—–0.75 = (–1)1 × 1.12 × 2–1

—S = 1

—Fraction = 1000…002

—Exponent = –1 + Bias

– Single: –1 + 127 = 126 = 011111102

– Double: –1 + 1023 = 1022 = 011111111102

• Single: 1011111101000…00

• Double: 1011111111101000…00

Chapter 3 — Arithmetic for Computers — 11

Floating-Point Example

• What number is represented by the single-precision float

11000000101000…00
—S = 1

—Fraction = 01000…002

—Fxponent = 100000012 = 129

• x = (–1)1 × (1 + 012) × 2(129 – 127)

= (–1) × 1.25 × 22

= –5.0

Chapter 3 — Arithmetic for Computers — 14

Floating-Point Addition

• Consider a 4-digit decimal example
—9.999 × 101 + 1.610 × 10–1

• 1. Align decimal points
—Shift number with smaller exponent

—9.999 × 101 + 0.016 × 101

• 2. Add significands
—9.999 × 101 + 0.016 × 101 = 10.015 × 101

• 3. Normalize result & check for over/underflow
—1.0015 × 102

• 4. Round and renormalize if necessary
—1.002 × 102

Chapter 3 — Arithmetic for Computers — 15

Floating-Point Addition

• Now consider a 4-digit binary example
—1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)

• 1. Align binary points
—Shift number with smaller exponent

—1.0002 × 2–1 + –0.1112 × 2–1

• 2. Add significands
—1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

• 3. Normalize result & check for over/underflow
—1.0002 × 2–4, with no over/underflow

• 4. Round and renormalize if necessary
—1.0002 × 2–4 (no change) = 0.0625

Chapter 3 — Arithmetic for Computers — 16

FP Adder Hardware

• Much more complex than integer adder

• Doing it in one clock cycle would take too long

—Much longer than integer operations

—Slower clock would penalize all instructions

• FP adder usually takes several cycles

—Can be pipelined

Chapter 3 — Arithmetic for Computers — 17

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Chapter 3 — Arithmetic for Computers — 20

FP Arithmetic Hardware

• FP multiplier is of similar complexity to FP adder
—But uses a multiplier for significands instead of an adder

• FP arithmetic hardware usually does
—Addition, subtraction, multiplication, division, reciprocal, square-root

—FP  integer conversion

• Operations usually takes several cycles
—Can be pipelined

FP Arithmetic x/

• Check for zero

• Add/subtract exponents

• Multiply/divide significands (watch sign)

• Normalize

• Round

• All intermediate results should be in double length storage

Floating Point Multiplication

Floating Point Division

Required Reading

• Stallings Chapter 9

• IEEE 754 on IEEE Web site

