Computer Organization and Architecture

Under Graduate Course (B. Tech-Information Technology, 2nd Semester) Jan 2020-July 2020

By

Dr. Satish Kumar Singh

Associate Professor Indian Institute of Information Technology, Allahabad Email: sk.singh@iiita.ac.in

IEEE Floating Point Representation

Real Numbers

- Numbers with fractions
- Could be done in pure binary -1001.1010 = $2^4 + 2^0 + 2^{-1} + 2^{-3} = 9.625$
- Where is the binary point?
- Fixed?
 - -Very limited
- Moving?
 - -How do you show where it is?

Floating Point

- Representation for non-integral numbers
 —Including very small and very large numbers
- Like scientific notation
 - $--2.34 \times 10^{56}$
 - $-+0.002 \times 10^{-4}$
 - $-+987.02 \times 10^{9}$
- In binary
 - $-\pm 1.xxxxxx_2 \times 2^{\gamma\gamma\gamma\gamma}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 —Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - -Single precision (32-bit)
 - —Double precision (64-bit)

	single: 8 bits double: 11 bit	single: 23 bits double: 52 bits
S	Exponent	Fraction

 $x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent - Bias)}$

- S: sign bit (0 \Rightarrow non-negative, 1 \Rightarrow negative)
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

- Exponents 0000000 and 11111111 reserved
- Smallest value
 - -Exponent: 00000001
 - \Rightarrow actual exponent = 1 127 = -126
 - -Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $-\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - -exponent: 11111110
 - \Rightarrow actual exponent = 254 127 = +127
 - —Fraction: 111...11 \Rightarrow significand \approx 2.0
 - $-\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - -Exponent: 0000000001 \Rightarrow actual exponent = 1 - 1023 = -1022
 - -Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $-\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - -Exponent: 1111111110
 - \Rightarrow actual exponent = 2046 1023 = +1023
 - —Fraction: 111...11 \Rightarrow significand \approx 2.0
 - $-\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - —all fraction bits are significant
 - —Single: approx 2⁻²³
 - Equivalent to 23 × log_{10} 2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - —Double: approx 2⁻⁵²
 - Equivalent to 52 × log_{10} 2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

Floating-Point Example

- Represent -0.75 --0.75 = $(-1)^1 \times 1.1_2 \times 2^{-1}$ --S = 1
 - $-Fraction = 1000...00_2$
 - -Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 01111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111110_2$
- Single: 1011111101000...00
- Double: 101111111101000...00

Floating-Point Example

- What number is represented by the single-precision float 11000000101000...00
 - -S = 1
 - $-Fraction = 01000...00_2$
 - $-Fxponent = 10000001_2 = 129$

•
$$X = (-1)^1 \times (1 + 01_2) \times 2^{(129 - 127)}$$

= $(-1) \times 1.25 \times 2^2$
= -5.0

Floating-Point Addition

- Consider a 4-digit decimal example $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - —Shift number with smaller exponent
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1}$
- 2. Add significands
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalize result & check for over/underflow -1.0015×10^2
- 4. Round and renormalize if necessary -1.002×10^2

Floating-Point Addition

- Now consider a 4-digit binary example $-1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - -Shift number with smaller exponent
 - $-1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $-1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow $-1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary $-1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - -Much longer than integer operations
 - —Slower clock would penalize all instructions
- FP adder usually takes several cycles

-Can be pipelined

FP Adder Hardware

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - -But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - -Addition, subtraction, multiplication, division, reciprocal, square-root
 - $-FP \leftrightarrow$ integer conversion
- Operations usually takes several cycles
 - -Can be pipelined

FP Arithmetic x/÷

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

Floating Point Multiplication

Floating Point Division

Required Reading

- Stallings Chapter 9
- IEEE 754 on IEEE Web site