

DATAPATH COMPUTER ARCHITECTURE
P

C

in
st

ru
ct

io
n

m
e
m

o
ry

+4

rt

rs

rd

re
g
is

te
rs

ALU

D
a
ta

m
e
m

o
ry

imm

1. Instruction

Fetch

2. Decode/

Register

Read

3. Execute 4. Memory
5. Write

Back

COMPUTER PERFORMANCE

 Latency:

 Time to completely execute a certain task

 For example, time to read a sector from disk is disk access

time or disk latency

 Throughput:

 Amount of work that can be done over a period of

time

 Performance Enhancement:

 Parallel Processing

 Pipeline

 Vector processing

 Array processing

3
/2

7
/2

0
2
0

3

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

PARALLEL PROCESSING

 Varity of techniques adopted to improve the
computer performance in terms of throughput,
while applying the simultaneous data processing
tasks.

 Virtually computational speed is enhanced.

 Concurrent data processing.

PURPOSE:
 Computer processing capability speed-up.

 Increase in throughput.

 Parallel processing is commercially feasible with
the advent of cost effective hardware design
technologies .

3
/2

7
/2

0
2
0

4

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

PARALLEL PROCESSING CONT…

 Various levels of parallel processing

 Data level: serial vs parallel

 Function level: Multiple functional units

 Functions may be identical or different.

 Architecture level

3
/2

7
/2

0
2
0

5

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

PARALLEL PROCESSOR CONT….
3

/2
7

/2
0
2
0

6

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

PARALLEL PROCESSOR CONT….

 Complex control requirement for parallel

processing using multifunctional organization.

 Coordination is quite difficult.

3
/2

7
/2

0
2
0

7

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

PARALLEL PROCESSOR CONT….

 Basis of Parallel Processing

 Internal organization of processor,

 Structural interconnects between processors,

 Information flow.

 Instruction Stream

 Sequence of instructions read from memory

 Data Stream

 Operations performed on data

 NOTE:

 Parallel processing in instruction or data streams or

both.

3
/2

7
/2

0
2
0

8

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

FLYNN’S CLASSIFICATION

 Single instruction stream, single data stream (SISD).

 Parallel processing by means of Multiple processing
elements with multiple functionality or pipelining.

 Single instruction stream, multiple data stream
(SIMD).

 Parallel processing by means of Multiple processing
elements with same functionality.

 Multiple instruction stream, single data stream
(MISD).

 Only of theoretical interest.

 Multiple instruction stream, multiple data stream
(MIMD).

 Parallel processing by means of Multiprocessor and
multicomputer system arrangement.

3
/2

7
/2

0
2
0

9

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

PIPELINING

 Pipelining:

 Process of decomposing the sequential process into

sub-processes being executed in special, respective

dedicated segments, operation concurrently.

 It is the collection of processing segments through

which binary information flows.

 Final result is obtained after passing the data from

all the segments.

PIPELINE  ASSEMBLY LINE

3
/2

7
/2

0
2
0

10

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

EXAMPLE OF PIPELINE PROCESSING

 Overlapped

computations

require

ISOLATION /

BUFFER

registers

between two

segments to

facilitate the

pipelining

process.

3
/2

7
/2

0
2
0

11

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

GENERAL CONSIDERATION OF PIPELINING

 Decomposability of operation into sub-operations

of about the same complexity level can be

implemented by pipeline processor.

 Pipeline processing is mostly efficient for those

applications with repeated task for different set

of data.

3
/2

7
/2

0
2
0

12

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

TWO PIPELINE ARCHITECTURES

3
/2

7
/2

0
2
0

13

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

PIPELINE SPEED-UP
3

/2
7

/2
0
2
0

14

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

3
/2

7
/2

0
2
0

15

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

LAUNDRY EXAMPLE

 Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, fold, and put
away

A B C D

° Dryer takes 30 minutes

° “Folder” takes 30
minutes

° “Stasher” takes 30
minutes to put clothes
into drawers

° Washer takes 30 minutes

SEQUENTIAL LAUNDRY

 Sequential laundry takes
8 hours for 4 loads

T

a

s

k

O

r

d

e

r

B

C

D

A

30
Time

3030 3030 30 3030 3030 3030 3030 3030

6 PM 7 8 9 10 11 12 1 2 AM

PIPELINED LAUNDRY

 Pipelined laundry takes
3.5 hours for 4 loads!

T

a

s

k

O

r

d

e

r

B

C

D

A

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

PIPELINING LESSONS (1/2)

 Pipelining doesn’t help

latency of single task, it

helps throughput of

entire workload

Multiple tasks operating

simultaneously using

different resources

 Potential speedup =

Number pipe stages

 Time to “fill” pipeline

and time to “drain” it

reduces speedup

6 PM 7 8 9

Time

B

C

D

A

3030 30 3030 30 30

T

a

s

k

O

r

d

e

r

PIPELINING LESSONS (2/2)

 Suppose new Washer
takes 20 minutes, new
Stasher takes 20
minutes. How much
faster is pipeline?

 Pipeline rate limited
by slowest pipeline
stage

Unbalanced lengths of
pipe stages also
reduces speedup

6 PM 7 8 9

Time

B

C

D

A

3030 30 3030 30 30

T

a

s

k

O

r

d

e

r

STEPS IN EXECUTING MIPS

1) IFetch: Fetch Instruction, Increment PC

2) Decode Instruction, Read Registers

3) Execute:

Mem-ref: Calculate Address

Arith-log: Perform Operation

4) Memory:

Load: Read Data from Memory

Store: Write Data to Memory

5) Write Back: Write Data to Register

PIPELINED EXECUTION REPRESENTATION

 Every instruction must take same number of steps, also

called pipeline “stages”, so some will go idle sometimes

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

Time

REVIEW: DATAPATH FOR MIPS

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

 Use datapath figure to represent pipeline

IFtch Dcd Exec Mem WB
A
L
UI$ Reg D$ Reg

P
C

in
st

ru
ct

io
n

m
e
m

o
ry

+4

rt

rs

rd

re
g
is

te
rs

ALU

D
a
ta

m
e
m

o
ry

imm

1. Instruction

Fetch
2. Decode/

Register Read
3. Execute 4. Memory

5. Write

Back

GRAPHICAL PIPELINE REPRESENTATION

I

n

s

t

r.

O

r

d

e

r

Load

Add

Store

Sub

Or

I$

Time (clock cycles)

I$

A
L
U

Reg

Reg

I$

D$

A
L
U

A
L
U

Reg

D$

Reg

I$

D$

Reg
A
L
U

Reg Reg

Reg

D$

Reg

D$

A
L
U

(In Reg, right half highlight read, left half write)

Reg

I$

EXAMPLE

 Suppose 2 ns for memory access, 2 ns for ALU

operation, and 1 ns for register file read or write

 Nonpipelined Execution:

 lw : IF + Read Reg + ALU + Memory + Write Reg = 2 + 1 + 2

+ 2 + 1 = 8 ns

 add: IF + Read Reg + ALU + Write Reg

= 2 + 1 + 2 + 1 = 6 ns

 Pipelined Execution:

 Max(IF,Read Reg,ALU,Memory,Write Reg) = 2 ns

PIPELINE HAZARD: MATCHING SOCKS IN

LATER LOAD

A depends on D; stall since folder tied up

T

a

s

k

O

r

d

e

r

B

C

D

A

E

F

bubble

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

Thank you

3
/2

7
/2

0
2
0

27

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

