


DATAPATH COMPUTER ARCHITECTURE
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COMPUTER PERFORMANCE

 Latency:

 Time to completely execute a certain task

 For example, time to read a sector from disk is disk access 

time or disk latency

 Throughput: 

 Amount of work that can be done over a period of 

time

 Performance Enhancement:

 Parallel Processing

 Pipeline

 Vector processing

 Array processing
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PARALLEL PROCESSING

 Varity of techniques adopted to improve the
computer performance in terms of throughput,
while applying the simultaneous data processing
tasks.

 Virtually computational speed is enhanced.

 Concurrent data processing.

PURPOSE:
 Computer processing capability speed-up.

 Increase in throughput.

 Parallel processing is commercially feasible with
the advent of cost effective hardware design
technologies .
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PARALLEL PROCESSING CONT…

 Various levels of parallel processing

 Data level: serial vs parallel

 Function level: Multiple functional units

 Functions may be identical or different.

 Architecture level
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PARALLEL PROCESSOR CONT….
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PARALLEL PROCESSOR CONT….

 Complex control requirement for parallel

processing using multifunctional organization.

 Coordination is quite difficult.
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PARALLEL PROCESSOR CONT….

 Basis of Parallel Processing

 Internal organization of processor,

 Structural interconnects between processors,

 Information flow.

 Instruction Stream

 Sequence of instructions read from memory

 Data Stream

 Operations performed on data 

 NOTE:

 Parallel processing in instruction or data streams or 

both.
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FLYNN’S CLASSIFICATION

 Single instruction stream, single data stream (SISD).

 Parallel processing by means of Multiple processing 
elements with multiple functionality or pipelining.

 Single instruction stream, multiple data stream 
(SIMD).

 Parallel processing by means of Multiple processing 
elements with same functionality.

 Multiple instruction stream, single data stream 
(MISD).

 Only of theoretical interest.

 Multiple instruction stream, multiple data stream 
(MIMD).

 Parallel processing by means of Multiprocessor and 
multicomputer system arrangement.
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PIPELINING

 Pipelining:

 Process of decomposing the sequential process into

sub-processes being executed in special, respective

dedicated segments, operation concurrently.

 It is the collection of processing segments through

which binary information flows.

 Final result is obtained after passing the data from

all the segments.

PIPELINE  ASSEMBLY LINE
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EXAMPLE OF PIPELINE PROCESSING

 Overlapped 

computations 

require 

ISOLATION / 

BUFFER 

registers 

between two 

segments to 

facilitate the 

pipelining 

process.
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GENERAL CONSIDERATION OF PIPELINING

 Decomposability of operation into sub-operations 

of about the same complexity level can be 

implemented by pipeline processor.

 Pipeline processing is mostly efficient for those 

applications with repeated task for different set 

of data.
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TWO PIPELINE ARCHITECTURES
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PIPELINE SPEED-UP
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LAUNDRY EXAMPLE

 Ann, Brian, Cathy, Dave 
each have one load of clothes 
to wash, dry, fold, and put 
away

A B C D

° Dryer takes 30 minutes

° “Folder” takes 30 
minutes

° “Stasher” takes 30 
minutes to put clothes 
into drawers

° Washer takes 30 minutes



SEQUENTIAL LAUNDRY

 Sequential laundry takes 
8 hours for 4 loads
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PIPELINED LAUNDRY

 Pipelined laundry takes 
3.5 hours for 4 loads!
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PIPELINING LESSONS (1/2)

 Pipelining doesn’t help 

latency of single task, it 

helps throughput of 

entire workload

Multiple tasks operating 

simultaneously using 

different resources

 Potential speedup = 

Number pipe stages

 Time to “fill” pipeline 

and time to “drain” it 

reduces speedup
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PIPELINING LESSONS (2/2)

 Suppose new Washer 
takes 20 minutes, new 
Stasher takes 20 
minutes. How much 
faster is pipeline?

 Pipeline rate limited 
by slowest pipeline 
stage

Unbalanced lengths of 
pipe stages also 
reduces speedup
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STEPS IN EXECUTING MIPS

1) IFetch: Fetch Instruction, Increment PC

2) Decode Instruction, Read Registers

3) Execute:

Mem-ref:  Calculate Address

Arith-log: Perform Operation

4) Memory: 

Load:  Read Data from Memory

Store:  Write Data to Memory

5) Write Back: Write Data to Register



PIPELINED EXECUTION REPRESENTATION

 Every instruction must take same number of steps, also 

called pipeline “stages”, so some will go idle sometimes

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

Time



REVIEW: DATAPATH FOR MIPS

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

 Use datapath figure to represent pipeline

IFtch Dcd Exec Mem WB
A
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GRAPHICAL PIPELINE REPRESENTATION
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EXAMPLE

 Suppose 2 ns for memory access, 2 ns for ALU 

operation, and 1 ns for register file read or write

 Nonpipelined Execution:

 lw : IF + Read Reg + ALU + Memory + Write Reg = 2 + 1 + 2 

+ 2 + 1 = 8 ns

 add: IF + Read Reg + ALU + Write Reg

= 2 + 1 + 2 + 1 = 6 ns

 Pipelined Execution:

 Max(IF,Read Reg,ALU,Memory,Write Reg)   = 2 ns  



PIPELINE HAZARD: MATCHING SOCKS IN

LATER LOAD

A depends on D; stall since folder tied up
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Thank you
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