

PROBLEMS FOR COMPUTERS

 Limits to pipelining: Hazards prevent next

instruction from executing during its designated

clock cycle

 Structural hazards: HW cannot support this combination

of instructions (single person to fold and put clothes away)

 Control hazards: Pipelining of branches & other

instructions stall the pipeline until the hazard “bubbles”

in the pipeline

 Data hazards: Instruction depends on result of prior

instruction still in the pipeline (missing sock)

STRUCTURAL HAZARD #1: SINGLE MEMORY (1/2)

Read same memory twice in same clock cycle

I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L
UI$ Reg D$ Reg

A
L
UI$ Reg D$ Reg

A
L
UI$ Reg D$ Reg

A
L
UReg D$ Reg

A
L
UI$ Reg D$ Reg

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

STRUCTURAL HAZARD #1: SINGLE MEMORY (2/2)

 Solution:

 infeasible and inefficient to create second memory

 so simulate this by having two Level 1 Caches

 have both an L1 Instruction Cache and an L1 Data

Cache

 need more complex hardware to control when both

caches miss

STRUCTURAL HAZARD #2: REGISTERS (1/2)

Can’t read and write to registers simultaneously

I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L
UI$ Reg D$ Reg

A
L
UI$ Reg D$ Reg

A
L
UI$ Reg D$ Reg

A
L
UReg D$ Reg

A
L
UI$ Reg D$ Reg

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

STRUCTURAL HAZARD #2: REGISTERS (2/2)

 Fact: Register access is VERY fast: takes less than

half the time of ALU stage

 Solution: introduce convention

 always Write to Registers during first half of each clock

cycle

 always Read from Registers during second half of each

clock cycle

 Result: can perform Read and Write during same clock

cycle

CONTROL HAZARD: BRANCHING (1/6)

 Suppose we put branch decision-making hardware

in ALU stage

 then two more instructions after the branch will always

be fetched, whether or not the branch is taken

 Desired functionality of a branch

 if we do not take the branch, don’t waste any time and

continue executing normally

 if we take the branch, don’t execute any instructions

after the branch, just go to the desired label

CONTROL HAZARD: BRANCHING (2/6)

 Initial Solution: Stall until decision is made

 insert “no-op” instructions: those that accomplish

nothing, just take time

 Drawback: branches take 3 clock cycles each (assuming

comparator is put in ALU stage)

CONTROL HAZARD: BRANCHING (3/6)

 Optimization #1:

 move comparator up to Stage 2

 as soon as instruction is decoded (Opcode identifies is as

a branch), immediately make a decision and set the

value of the PC (if necessary)

 Benefit: since branch is complete in Stage 2, only one

unnecessary instruction is fetched, so only one no-op is

needed

 Side Note: This means that branches are idle in Stages

3, 4 and 5.

 Insert a single no-op (bubble)

CONTROL HAZARD: BRANCHING (4/6)

Add

Beq

Load

A
L
UI$ Reg D$ Reg

A
L
UI$ Reg D$ Reg

A
L
UReg D$ RegI$

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

bub

ble

°Impact: 2 clock cycles per branch
instruction slow

CONTROL HAZARD: BRANCHING (5/6)

 Optimization #2: Redefine branches

 Old definition: if we take the branch, none of the

instructions after the branch get executed by accident

 New definition: whether or not we take the branch, the

single instruction immediately following the branch gets

executed (called the branch-delay slot)

CONTROL HAZARD: BRANCHING (6/6)

 Notes on Branch-Delay Slot

 Worst-Case Scenario: can always put a no-op in the

branch-delay slot

 Better Case: can find an instruction preceding the

branch which can be placed in the branch-delay slot

without affecting flow of the program

 re-ordering instructions is a common method of speeding up

programs

 compiler must be very smart in order to find instructions to do

this

 usually can find such an instruction at least 50% of the time

EXAMPLE: NONDELAYED VS. DELAYED BRANCH

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Nondelayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Delayed Branch

Exit: Exit:

DATA HAZARDS

 An instruction depends on completion of data access by

a previous instruction

 add $s0, $t0, $t1
sub $t2, $s0, $t3

FORWARDING (AKA BYPASSING)

 Use result when it is computed

 Don’t wait for it to be stored in a register

 Requires extra connections in the datapath

LOAD-USE DATA HAZARD

 Can’t always avoid stalls by forwarding

 If value not computed when needed

 Can’t forward backward in time!

CODE SCHEDULING TO AVOID STALLS

 Reorder code to avoid use of load result in the next

instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

THINGS TO REMEMBER (1/2)

 Optimal Pipeline

 Each stage is executing part of an instruction each clock

cycle.

 One instruction finishes during each clock cycle.

 On average, execute far more quickly.

 What makes this work?

 Similarities between instructions allow us to use same

stages for all instructions (generally).

 Each stage takes about the same amount of time as all

others: little wasted time.

ADVANCED PIPELINING CONCEPTS (IF TIME)

 “Out-of-order” Execution

 “Superscalar” execution

 State-of-the-Art Microprocessor

REVIEW PIPELINE HAZARD: STALL IS DEPENDENCY

A depends on D; stall since folder tied up

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

E

F

bubble

303030 3030 30 30

OUT-OF-ORDER LAUNDRY: DON’T WAIT

A depends on D; rest continue; need more resources to
allow out-of-order

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

303030 3030 30 30

E

F

bubble

SUPERSCALAR LAUNDRY: PARALLEL PER STAGE

More resources, HW to match mix of
parallel tasks?

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

E

F

(light clothing)
(dark clothing)

(very dirty clothing)

(light clothing)
(dark clothing)

(very dirty clothing)

303030 3030

SUPERSCALAR LAUNDRY: MISMATCH MIX

Task mix underutilizes extra resources

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

(light clothing)

(light clothing)
(dark clothing)

(light clothing)

A

B

D

C

STATE OF THE ART: COMPAQ ALPHA 21264

 Very similar instruction set to MIPS

 1 64KB Instruction cache, 1 64 KB Data cache on chip;
16MB L2 cache off chip

 Clock cycle = 1.5 nanoseconds,
or 667 MHz clock rate

 Superscalar: fetch up to
6 instructions /clock cycle,
retires up to 4 instruction/clock cycle

 Execution out-of-order

 15 million transistors, 90 watts!

THINGS TO REMEMBER (2/2)

 Pipelining a Big Idea: widely used concept

 What makes it less than perfect?

 Structural hazards: suppose we had only one cache?

 Need more HW resources

 Control hazards: need to worry about branch
instructions?

 Delayed branch

 Data hazards: an instruction depends on a previous
instruction?

Thank you

3
/2

7
/2

0
2
0

26

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

