Computer Organization and Architecture

Under Graduate Course
(B. Tech-Information Technology, 2" Semester)
Jan 2020-July 2020

By

Dr. Satish Kumar Singh

Associate Professor
Indian Institute of Information Technology, Allahabad
Email:sk.singh@iiita.ac.in

PROBLEMS FOR COMPUTERS

o Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle

o Structural hazards: HW cannot support this combination
of instructions (single person to fold and put clothes away)

o Control hazards: Pipelining of branches & other
instructions stall the pipeline until the hazard “bubbles”

in the pipeline
e Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

STRUCTURAL HAZARD #1: SINGLE MEMORY (1/2)

Time (clock cycles)

AReg |

Load

15 L gD$§Reg§

Instr 1 (AL

o~ (N O -

V,

I3 .IReg :

Instr 2 Q{ |r

Instr 3 Reg ?] DS$ Ié_Reg

§I$.i:Reg %Iﬁ gReg

(1

YInstr 4

ﬁCDQﬁO

Read same memory twice in same clock cycle

STRUCTURAL HAZARD #1: SINGLE MEMORY (2/2)

o Solution:
e 1nfeasible and inefficient to create second memory

e so simulate this by having two L.evel 1 Caches

e have both an L1 Instruction Cache and an L1 Data
Cache

e need more complex hardware to control when both
caches miss

STRUCTURAL HAZARD #2: REGISTERS (1/2)

Time (clock cycles)

I
n
S
t Load il
[linstr 1
O linstr 2
r
g Instr 3
€ YInstr 4
r

Can’t read and write to régisfers éimﬁltarieously

STRUCTURAL HAZARD #2: REGISTERS (2/2)

o Fact: Register access 1s VERY fast: takes less than
half the time of ALU stage

o Solution: introduce convention
e always Write to Registers during first half of each clock
cycle
e always Read from Registers during second half of each
clock cycle

e Result: can perform Read and Write during same clock
cycle

CONTROL HAZARD: BRANCHING (1/6)

o Suppose we put branch decision-making hardware
i ALU stage

e then two more instructions after the branch will always
be fetched, whether or not the branch 1s taken

o Desired functionality of a branch

e 1f we do not take the branch, don’t waste any time and
continue executing normally

o 1f we take the branch, don’t execute any instructions
after the branch, just go to the desired label

CONTROL HAZARD: BRANCHING (2/6)

o Initial Solution: Stall until decision 1s made

e Insert “no-op” instructions: those that accomplish
nothing, just take time

 Drawback: branches take 3 clock cycles each (assuming
comparator 1s put in ALU stage)

CONTROL HAZARD: BRANCHING (3/6)

o Optimization #1:
e move comparator up to Stage 2

e as soon as Instruction is decoded (Opcode 1dentifies is as
a branch), immediately make a decision and set the
value of the PC (if necessary)

e Benefit: since branch is complete in Stage 2, only one
unnecessary instruction is fetched, so only one no-op is
needed

e Side Note: This means that branches are idle in Stages
3, 4 and 5.

CONTROL HAZARD: BRANCHING (4/6)

o Insert a single no-op (bubble)

Time (clock cycles)

I
N
S : . e N : :
t |Add LSl Q(‘Lir

Beg

O |Load

r

d | _
€ °Impact: 2 clock cycles per branch
r 1nstruction = slow

CONTROL HAZARD: BRANCHING (5/6)

o Optimization #2: Redefine branches
e Old definition: if we take the branch, none of the
instructions after the branch get executed by accident

e New definition: whether or not we take the branch, the
single instruction immediately following the branch gets
executed (called the branch-delay slot)

CONTROL HAZARD: BRANCHING (6/6)

o Notes on Branch-Delay Slot

o Worst-Case Scenario: can always put a no-op in the
branch-delay slot

e Better Case: can find an instruction preceding the
branch which can be placed in the branch-delay slot
without affecting flow of the program

o re-ordering instructions i1s a common method of speeding up
programs

o compiler must be very smart in order to find instructions to do
this
o usually can find such an instruction at least 50% of the time

EXAMPLE: NONDELAYED VS. DELAYED BRANCH

Nondelayed Branch Delayed Branch

or S8, $9 ,510 add $1 ,$2,S3
add S$1 ,$2,5$3 sub $4, $5,%6
sub $4, $5,S$6 eq $1, $4, Exit
 beq $1, $4, Exi r 58, $9 ,$10
xor $10, $1,S$11 xor $10, $1,S$11

Exit: Exit:

DATA HAZARDS

o An instruction depends on completion of data access by
a previous Instruction

e add $s0, $t0, $tl
sub $t2, $s0O0, $t3

, 200 400 600 800 1000 1200 1400 1600
Time T I I I I >

[
add $s0, $t0, $t1 | IF —= 1D %—MEM WB |
bubble bubble bubble bubble bubble
@ @ O @ O
bubble bubble) (" bubble bubble,) (bubble
9 O @ O O

sub $t2, $s0, $t3 IF —E ID %*MEM WBE

FORWARDING (AKA BYPASSING)

o Use result when 1t 1s computed
e Don’t wait for it to be stored in a register
 Requires extra connections in the datapath

Program
execution . 200 400 600 800 1000
order Time . ' ' ' '
(in instructions)

add $s0, $t0, $t1 IF

MEM WB |

sub $t2, $s0, $t3

LOAD-USE DATA HAZARD

o Can’t always avoid stalls by forwarding
o If value not computed when needed
o Can’t forward backward in time!

Program
execution . 200 400 600 800 1000 1200 1400
order Time . T . . .

(in instructions) I
w $s0, 20($t1) IF = ID SEX—IMEM

- D

MEM|—{ WB |

sub $t2, $s0, $t3 IF

CODE SCHEDULING TO AVOID STALLS

o Reorder code to avoid use of load result in the next
instruction

oCcodeforA = B + E; C

I
vy
+

2

Tw $tl, 0($t0)

Tw @ 4($t0)

sw $t3, 12($t0)

w (5t4)-8($t0)
stall |—— add $t5, $ti,
sw $t5, 16($t0)

THINGS TO REMEMBER (1/2)

o Optimal Pipeline
o Each stage 1s executing part of an instruction each clock
cycle.
e One instruction finishes during each clock cycle.

e On average, execute far more quickly.

o What makes this work?

e Similarities between instructions allow us to use same
stages for all instructions (generally).

o Each stage takes about the same amount of time as all
others: little wasted time.

ADVANCED PIPELINING CONCEPTS (IF TIME)

o “Out-of-order” Execution

o “Superscalar” execution

o State-of-the-Art Microprocessor

REVIEW PIPELINE HAZARD: STALL IS DEPENDENCY

6IPM 7 8 9 10 11 12 1 2AM

| | -
3030 30 30 30 30 30 Time

S @5 <o, A
5 B85 |

~ n 9 —

?CDQﬂO
Gt Ct C1 Ct

OUT-OF-ORDER LAUNDRY: DON'T WAIT

6IPM 7 8 9 10 11 12 1 2AM
1 I I >

T 30303030303030 Time
a | @5 Coeve>r, &
(o BELA

SIEE

K
A
A

~®a=0
Gt Gt C1 Gt

SUPERSCALAR LAUNDRY: PARALLEL PER STAGE

6 PM 7 8 9 10 11 12 1 2AM
I_I_==I >

3030 303030 Time

" & (light clothing)
A (dark clothing)

15 4 (very dirty clothing)

“ % (light clothing)
A (dark clothing)

& (verydirty clothing)

~ n 9 —

et Gt ©1 Gt Gt X

N

[

HCDQHO

SUPERSCALAR LAUNDRY: MISMATCH MIX

6PM 7 8 9 10 11 12 1 2AM
| I I >

T 30303030303030 Time
a1 &M@s) A (light clothing)
S - o
|8 4
A
(r) B “ & (light clothing)
d|® “R (dark clothing)
e o
r‘,@ A (light clothing)

STATE OF THE ART: COMPAQ ALPHA 21264

o Very similar instruction set to MIPS

o 1 64KB Instruction cache, 1 64 KB Data cache on chip;
16MB L2 cache off chip

o Clock cycle = 1.5 nanoseconds,
or 667 MHz clock rate

o Superscalar: fetch up to
6 1nstructions /clock cycle,
retires up to 4 instruction/clock cycle

o Execution out-of-order
o 15 million transistors, 90 watts!

THINGS TO REMEMBER (2/2)

o Pipelining a Big Idea: widely used concept

o What makes 1t less than perfect?
e Structural hazards: suppose we had only one cache?

—> Need more HW resources

e Control hazards: need to worry about branch
instructions?

— Delayed branch

e Data hazards: an instruction depends on a previous
instruction?

Computer organization & Architecture by
Dr. S. K. Singh

3/27/2020

