

PROBLEMS FOR COMPUTERS

 Limits to pipelining: Hazards prevent next

instruction from executing during its designated

clock cycle

 Structural hazards: HW cannot support this combination

of instructions (single person to fold and put clothes away)

 Control hazards: Pipelining of branches & other

instructions stall the pipeline until the hazard “bubbles”

in the pipeline

 Data hazards: Instruction depends on result of prior

instruction still in the pipeline (missing sock)

STRUCTURAL HAZARD #1: SINGLE MEMORY (1/2)

Read same memory twice in same clock cycle

I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L
UI$ Reg D$ Reg

A
L
UI$ Reg D$ Reg

A
L
UI$ Reg D$ Reg

A
L
UReg D$ Reg

A
L
UI$ Reg D$ Reg

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

STRUCTURAL HAZARD #1: SINGLE MEMORY (2/2)

 Solution:

 infeasible and inefficient to create second memory

 so simulate this by having two Level 1 Caches

 have both an L1 Instruction Cache and an L1 Data

Cache

 need more complex hardware to control when both

caches miss

STRUCTURAL HAZARD #2: REGISTERS (1/2)

Can’t read and write to registers simultaneously

I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L
UI$ Reg D$ Reg

A
L
UI$ Reg D$ Reg

A
L
UI$ Reg D$ Reg

A
L
UReg D$ Reg

A
L
UI$ Reg D$ Reg

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

STRUCTURAL HAZARD #2: REGISTERS (2/2)

 Fact: Register access is VERY fast: takes less than

half the time of ALU stage

 Solution: introduce convention

 always Write to Registers during first half of each clock

cycle

 always Read from Registers during second half of each

clock cycle

 Result: can perform Read and Write during same clock

cycle

CONTROL HAZARD: BRANCHING (1/6)

 Suppose we put branch decision-making hardware

in ALU stage

 then two more instructions after the branch will always

be fetched, whether or not the branch is taken

 Desired functionality of a branch

 if we do not take the branch, don’t waste any time and

continue executing normally

 if we take the branch, don’t execute any instructions

after the branch, just go to the desired label

CONTROL HAZARD: BRANCHING (2/6)

 Initial Solution: Stall until decision is made

 insert “no-op” instructions: those that accomplish

nothing, just take time

 Drawback: branches take 3 clock cycles each (assuming

comparator is put in ALU stage)

CONTROL HAZARD: BRANCHING (3/6)

 Optimization #1:

 move comparator up to Stage 2

 as soon as instruction is decoded (Opcode identifies is as

a branch), immediately make a decision and set the

value of the PC (if necessary)

 Benefit: since branch is complete in Stage 2, only one

unnecessary instruction is fetched, so only one no-op is

needed

 Side Note: This means that branches are idle in Stages

3, 4 and 5.

 Insert a single no-op (bubble)

CONTROL HAZARD: BRANCHING (4/6)

Add

Beq

Load

A
L
UI$ Reg D$ Reg

A
L
UI$ Reg D$ Reg

A
L
UReg D$ RegI$

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

bub

ble

°Impact: 2 clock cycles per branch
instruction  slow

CONTROL HAZARD: BRANCHING (5/6)

 Optimization #2: Redefine branches

 Old definition: if we take the branch, none of the

instructions after the branch get executed by accident

 New definition: whether or not we take the branch, the

single instruction immediately following the branch gets

executed (called the branch-delay slot)

CONTROL HAZARD: BRANCHING (6/6)

 Notes on Branch-Delay Slot

 Worst-Case Scenario: can always put a no-op in the

branch-delay slot

 Better Case: can find an instruction preceding the

branch which can be placed in the branch-delay slot

without affecting flow of the program

 re-ordering instructions is a common method of speeding up

programs

 compiler must be very smart in order to find instructions to do

this

 usually can find such an instruction at least 50% of the time

EXAMPLE: NONDELAYED VS. DELAYED BRANCH

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Nondelayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Delayed Branch

Exit: Exit:

DATA HAZARDS

 An instruction depends on completion of data access by

a previous instruction

 add $s0, $t0, $t1
sub $t2, $s0, $t3

FORWARDING (AKA BYPASSING)

 Use result when it is computed

 Don’t wait for it to be stored in a register

 Requires extra connections in the datapath

LOAD-USE DATA HAZARD

 Can’t always avoid stalls by forwarding

 If value not computed when needed

 Can’t forward backward in time!

CODE SCHEDULING TO AVOID STALLS

 Reorder code to avoid use of load result in the next

instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

THINGS TO REMEMBER (1/2)

 Optimal Pipeline

 Each stage is executing part of an instruction each clock

cycle.

 One instruction finishes during each clock cycle.

 On average, execute far more quickly.

 What makes this work?

 Similarities between instructions allow us to use same

stages for all instructions (generally).

 Each stage takes about the same amount of time as all

others: little wasted time.

ADVANCED PIPELINING CONCEPTS (IF TIME)

 “Out-of-order” Execution

 “Superscalar” execution

 State-of-the-Art Microprocessor

REVIEW PIPELINE HAZARD: STALL IS DEPENDENCY

A depends on D; stall since folder tied up

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

E

F

bubble

303030 3030 30 30

OUT-OF-ORDER LAUNDRY: DON’T WAIT

A depends on D; rest continue; need more resources to
allow out-of-order

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

303030 3030 30 30

E

F

bubble

SUPERSCALAR LAUNDRY: PARALLEL PER STAGE

More resources, HW to match mix of
parallel tasks?

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

E

F

(light clothing)
(dark clothing)

(very dirty clothing)

(light clothing)
(dark clothing)

(very dirty clothing)

303030 3030

SUPERSCALAR LAUNDRY: MISMATCH MIX

Task mix underutilizes extra resources

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

(light clothing)

(light clothing)
(dark clothing)

(light clothing)

A

B

D

C

STATE OF THE ART: COMPAQ ALPHA 21264

 Very similar instruction set to MIPS

 1 64KB Instruction cache, 1 64 KB Data cache on chip;
16MB L2 cache off chip

 Clock cycle = 1.5 nanoseconds,
or 667 MHz clock rate

 Superscalar: fetch up to
6 instructions /clock cycle,
retires up to 4 instruction/clock cycle

 Execution out-of-order

 15 million transistors, 90 watts!

THINGS TO REMEMBER (2/2)

 Pipelining a Big Idea: widely used concept

 What makes it less than perfect?

 Structural hazards: suppose we had only one cache?

 Need more HW resources

 Control hazards: need to worry about branch
instructions?

 Delayed branch

 Data hazards: an instruction depends on a previous
instruction?

Thank you

3
/2

7
/2

0
2
0

26

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

