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• Array vs. Matrix Operation
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Introduction to Mathematical Operations in DIP

• Linear vs. Nonlinear Operation

 ( , ) ( , )H f x y g x y

Additivity

Homogeneity

 

 

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

i i j j

i i j j

i i j j

i i j j

H a f x y a f x y

H a f x y H a f x y

a H f x y a H f x y

a g x y a g x y

  

    

    

 

H is said to be a linear operator;
H is said to be a nonlinear operator if it does not meet the 

above qualification.
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Arithmetic Operations

• Arithmetic operations between images are array operations. 
The four arithmetic operations are denoted as

s(x,y) = f(x,y) + g(x,y)

d(x,y) = f(x,y) – g(x,y)

p(x,y) = f(x,y) × g(x,y)

v(x,y) = f(x,y) ÷ g(x,y)
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Example: Addition of Noisy Images for Noise Reduction

Noiseless image: f(x,y)

Noise: n(x,y)  (at every pair of coordinates (x,y), the noise is uncorrelated and has zero average value)

Corrupted image: g(x,y)

g(x,y) = f(x,y) + n(x,y)

Reducing the noise by adding a set of noisy images, {gi(x,y)}
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Example: Addition of Noisy Images for Noise Reduction
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Example: Addition of Noisy Images for Noise Reduction

► In astronomy, imaging under very low light levels 
frequently causes sensor noise to render single images 
virtually useless for analysis.

► In astronomical observations, similar sensors for noise 
reduction by observing the same scene over long 
periods of time. Image averaging is then used to 
reduce the noise. 
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An Example of Image Subtraction: Mask Mode Radiography

Mask h(x,y): an X-ray image of a region of a patient’s body 

Live images f(x,y): X-ray images captured at TV rates after injection of the contrast medium

Enhanced detail g(x,y)

g(x,y) = f(x,y) - h(x,y)

The procedure gives a movie showing how the contrast medium propagates through the various 
arteries in the area being observed.
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An Example of Image Multiplication
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Set and Logical Operations
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Set and Logical Operations

• Let A be the elements of a gray-scale image

The elements of A are triplets of the form (x, y, z), where x and y 
are spatial coordinates and z denotes the intensity at the point (x, 
y).

• The complement of A is denoted Ac

{( , , ) | ( , , ) }

2 1;  is the number of intensity bits used to represent 

c

k
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K k z
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Set and Logical Operations

{max( , ) | , }
z

A B a b a A b B   
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Set and Logical Operations
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Set and Logical Operations
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Spatial Operations

► Single-pixel operations

Alter the values of an image’s pixels based on the intensity.

e.g.,

( )s T z
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Spatial Operations

► Neighborhood operations

The value of this pixel is determined 
by a specified operation involving the 
pixels in the input image with 
coordinates in Sxy
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Spatial Operations

► Neighborhood operations
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Geometric Spatial Transformations

► Geometric transformation (rubber-sheet transformation)

— A spatial transformation of coordinates

— intensity interpolation that assigns intensity values to the spatially transformed 
pixels.

► Affine transform

( , ) {( , )}x y T v w
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Intensity Assignment 

► Forward Mapping

It’s possible that two or more pixels can be transformed to the same 
location in the output image.

► Inverse Mapping

The nearest input pixels to determine the intensity of the output pixel value.

Inverse mappings are more efficient to implement than forward mappings.

( , ) {( , )}x y T v w

1( , ) {( , )}v w T x y
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Example: Image Rotation and Intensity Interpolation
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Image Registration

• Input and output images are available but the transformation function is 
unknown.

Goal: estimate the transformation function and use it to register the two images.

• One of the principal approaches for image registration is to use tie points (also 
called control points)

 The corresponding points are known precisely in the input and output 
(reference) images. 
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Image Registration

• A simple model based on bilinear approximation:

1 2 3 4

5 6 7 8

Where ( , ) and ( , ) are the coordinates of 

tie points in the input and reference images.
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Image Registration
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Image Transform

• A particularly important class of 2-D linear transforms, denoted T(u, v)
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Image Transform

• Given T(u, v), the original image f(x, y) can be recoverd using the inverse 
tranformation of T(u, v).
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Image Transform
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Example: Image Denoising by Using DCT 
Transform
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Forward Transform Kernel
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The Kernels for 2-D Fourier Transform
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2-D Fourier Transform
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Probabilistic Methods
Let ,  0,  1,  2,  ...,  -1, denote the values of all possible intensities

in an  digital image. The probability, ( ), of intensity level

 occurring in a given image is estimated as
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Probabilistic Methods
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Example: Comparison of Standard Deviation Values

31.6 14.3  49.2 


