Image and Video Processing

Intensity Transformation-01

Spatial Domain vs. Transform Domain

• Spatial domain

image plane itself, directly process the intensity values of the image plane

• Transform domain

process the transform coefficients, not directly process the intensity values of the image plane

Spatial Domain Process

g(x, y) = T[f(x, y)]f(x, y): input image g(x, y): output image T : an operator on f defined over a neighborhood of point (x, y)

Spatial Domain Process

FIGURE 3.1 $A3 \times 3$ neighborhood about a point (x, y) in an image in the spatial domain. The neighborhood is moved from pixel to pixel in the image to generate an output image.

Spatial Domain Process

Intensity transformation function

s = T(r)

a b

FIGURE 3.2 Intensity transformation functions. (a) Contraststretching function.

(b) Thresholding function.

Some Basic Intensity Transformation Functions

Image Negatives

Example: Image Negatives

CVBL IIIT Allohobod

Log Transformations

Example: Log Transformations

Power-Law (Gamma) Transformations

 $s = cr^{\gamma}$

FIGURE 3.6 Plots of the equation $s = cr^{\gamma}$ for various values of γ (c = 1 in all cases). All curves were scaled to fit in the range shown.

a b c d

FIGURE 3.7

(a) Intensity ramp image. (b) Image as viewed on a simulated monitor with a gamma of 2.5. (c) Gamma-corrected image.
(d) Corrected image.
(d) Corrected image as viewed on the same monitor. Compare (d) and (a).

Gamma-corrected image as viewed on the same monitor

Cathode ray tube (CRT) devices have an intensity-to-voltage response that is a power function, with exponents varying from approximately 1.8 to 2.5

a b c d

FIGURE 3.8

(a) Magnetic resonance image (MRI) of a fractured human spine. (b)–(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 0.6, 0.4, \text{and}$ 0.3, respectively. (Original image courtesy of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center.)

a b c d FIGURE 3.9 (a) Aerial image. (b)-(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 3.0, 4.0, \text{and}$ 5.0, respectively. (Original image for this example courtesy of NASA.)

Piecewise-Linear Transformations

• Contrast Stretching

— Expands the range of intensity levels in an image so that it spans the full intensity range of the recording medium or display device.

• Intensity-level Slicing

— Highlighting a specific range of intensities in an image often is of interest.

Image and Video Processing

a b c d

FIGURE 3.10 Contrast stretching. (a) Form of transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding. (Original image courtesy of Dr. Roger Heady, Research School of **Biological Sciences**, Australian National University, Canberra, Australia.)

Bit-plane Slicing

a b c d e f

g h i

FIGURE 3.14 (a) An 8-bit gray-scale image of size 500×1192 pixels. (b) through (i) Bit planes 1 through 8, with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.

Bit-plane Slicing

a b c

FIGURE 3.15 Images reconstructed using (a) bit planes 8 and 7; (b) bit planes 8, 7, and 6; and (c) bit planes 8, 7, 6, and 5. Compare (c) with Fig. 3.14(a).

