Intensity Transformation-01
Spatial Domain vs. Transform Domain

• Spatial domain
 image plane itself, directly process the intensity values of the image plane

• Transform domain
 process the transform coefficients, not directly process the intensity values of the image plane
Spatial Domain Process

\[g(x, y) = T[f(x, y)] \]

- \(f(x, y) \): input image
- \(g(x, y) \): output image
- \(T \): an operator on \(f \) defined over a neighborhood of point \((x, y)\)
Spatial Domain Process

FIGURE 3.1
A 3×3 neighborhood about a point (x, y) in an image in the spatial domain. The neighborhood is moved from pixel to pixel in the image to generate an output image.
Spatial Domain Process

Intensity transformation function

\[s = T(r) \]

FIGURE 3.2
Intensity transformation functions.
(a) Contrast-stretching function.
(b) Thresholding function.
Some Basic Intensity Transformation Functions

FIGURE 3.3 Some basic intensity transformation functions. All curves were scaled to fit in the range shown.
Image Negatives

Image negatives

\[s = L - 1 - r \]
Example: Image Negatives

FIGURE 3.4
(a) Original digital mammogram. (b) Negative image obtained using the negative transformation in Eq. (3.2-1). (Courtesy of G.E. Medical Systems.)

Small lesion
Log Transformations

\[s = c \log(1 + r) \]
Example: Log Transformations

FIGURE 3.5
(a) Fourier spectrum. (b) Result of applying the log transformation in Eq. (3.2-2) with $c = 1$.
Power-Law (Gamma) Transformations

\[S = cr^\gamma \]

FIGURE 3.6 Plots of the equation \(S = cr^\gamma \) for various values of \(\gamma \) (\(c = 1 \) in all cases). All curves were scaled to fit in the range shown.
Example: Gamma Transformations

FIGURE 3.7
(a) Intensity ramp image. (b) Image as viewed on a simulated monitor with a gamma of 2.5. (c) Gamma-corrected image. (d) Corrected image as viewed on the same monitor. Compare (d) and (a).
Example: Gamma Transformations

Cathode ray tube (CRT) devices have an intensity-to-voltage response that is a power function, with exponents varying from approximately 1.8 to 2.5.

\[S = r^{1/2.5} \]
Example: Gamma Transformations

FIGURE 3.8
(a) Magnetic resonance image (MRI) of a fractured human spine.
(b)–(d) Results of applying the transformation in Eq. (3.2-3) with $c = 1$ and $\gamma = 0.6, 0.4, \text{ and } 0.3$, respectively.
(Original image courtesy of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center.)
Example: Gamma Transformations

FIGURE 3.9
(a) Aerial image. (b)–(d) Results of applying the transformation in Eq. (3.2-3) with $c = 1$ and $\gamma = 3.0, 4.0, \text{and} 5.0$, respectively. (Original image for this example courtesy of NASA.)
Piecewise-Linear Transformations

• **Contrast Stretching**
 — Expands the range of intensity levels in an image so that it spans the full intensity range of the recording medium or display device.

• **Intensity-level Slicing**
 — Highlighting a specific range of intensities in an image often is of interest.
FIGURE 3.10
Contrast stretching.
(a) Form of transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)
Highlight the major blood vessels and study the shape of the flow of the contrast medium (to detect blockages, etc.)

Measuring the actual flow of the contrast medium as a function of time in a series of images
Bit-plane Slicing

FIGURE 3.13
Bit-plane representation of an 8-bit image.
Bit-plane Slicing

FIGURE 3.14 (a) An 8-bit gray-scale image of size 500×1192 pixels. (b) through (i) Bit planes 1 through 8, with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.
Bit-plane Slicing

FIGURE 3.15 Images reconstructed using (a) bit planes 8 and 7; (b) bit planes 8, 7, and 6; and (c) bit planes 8, 7, 6, and 5. Compare (c) with Fig. 3.14(a).