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Outline

• Fourier Transform

• Filtering in Fourier Transform Domain
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Fourier Series and Fourier Transform: History

• Fourier Series

Any periodic function can be expressed as the sum of 
sines and /or cosines of different frequencies, each 
multiplied by a different coefficients

• Fourier Transform

Any function that is not periodic can be expressed as 
the integral of  sines and /or cosines multiplied by a 
weighing function
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Fourier Series: Example
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Preliminary Concepts
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Fourier Series

2

A function ( ) of a continuous variable  that is periodic

with period, , can be expressed as the sum of sines and 

cosines multiplied by appropriate coefficients
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Impulses and the Sifting Property (1)

A   of a continuous variable  located 

at =0, denoted ( ), defined as

      if 0
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Impulses and the Sifting Property (2)

A   of a discrete variable  located 

at =0, denoted ( ), defined as
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Impulses and the Sifting Property (3)
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Fourier Transform: One Continuous Variable

1 2

The    of ( )
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Fourier Transform: One Continuous Variable
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Fourier Transform: Impulses

0

0

2

0

2

0 0

The Fourier transform of a unit impulse located at :
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The Fourier transform of a unit impulse located at the origin:
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Fourier Transform: Impulse Trains

  ( ),      ( ) ( )T T

n

Impulse train s t s t t n T


 



  

2

2
/2

/2

The Fourier series:

                 ( )

where

1
                ( )

n
j t

T
T n

n

n
T j t

T
n T

T

s t c e

c s t e dt
T












 
















Computer Vision & Biometrics Lab, Indian Institute of Information Technology, Allahabad

Image and Video Processing10/2/2020

14

Fourier Transform: Impulse Trains
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Fourier Transform: Impulse Trains
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Let ( ) denote the Fourier transform of the

periodic impulse train ( ) 
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Fourier Transform and Convolution

The convolution of two functions is denoted 

by the operator 

          ( )    ( ) ( ) ( )f t h t f h t d  
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Fourier Transform and Convolution

( ) ( ) ( )   ( )f t h t H F 

( )   ( ) ( ) ( )f t h t H F 

Fourier Transform Pairs
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Fourier Transform of Sampled Functions
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Fourier Transform of Sampled Functions
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Question

The Fourier transform of the 
sampled function (shown in the 
following figure) is 

1. Continuous

2. Discrete
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Fourier Transform of Sampled Functions

► A bandlimited signal is a signal whose Fourier transform 
is zero above a certain finite frequency. In other words, if 
the Fourier transform has finite support then the signal is 
said to be bandlimited. 

An example of a simple bandlimited signal is a sinusoid of 
the form,

( ) sin(2 )x t ft  
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Fourier Transform of Sampled Functions
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Nyquist–Shannon sampling theorem

• We can recover       from its sampled version if we can 
isolate a copy of         from the periodic sequence of 
copies of this function contained in        , the transform 
of the sampled function 

• Sufficient separation is guaranteed if 

Sampling theorem: A continuous, band-limited function 
can be recovered completely from a set of its samples if 
the samples are acquired at a rate exceeding twice the 
highest frequency content of the function

( )f t%

( )f t

( )F 

( )F %

max

1
2

T






Computer Vision & Biometrics Lab, Indian Institute of Information Technology, Allahabad

Image and Video Processing10/2/2020

24

Nyquist–Shannon sampling theorem

2( ) ( ) j tf t F e d 
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Aliasing

If a band-limited function is sampled at a rate that is 
less than twice its highest frequency?

The inverse transform will yield a corrupted function. 
This effect is known as frequency aliasing or simply as 
aliasing.
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Aliasing
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Aliasing



Computer Vision & Biometrics Lab, Indian Institute of Information Technology, Allahabad

Image and Video Processing10/2/2020

28

Function Reconstruction from Sampled Data
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The Discrete Fourier Transform (DFT) of One 
Variable
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2-D Impulse and Sifting Property: Continuous
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2-D Impulse and Sifting Property: Discrete

1       if 0
The impulse ( , ),        ( , )

0        otherwise
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2-D Fourier Transform: Continuous
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2-D Fourier Transform: Continuous
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2-D Sampling and 2-D Sampling Theorem

2  impulse train:
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2-D Sampling and 2-D Sampling Theorem

max max

max max

max ma

Function ( , ) is said to be band-limited if its Fourier transform

is 0 outside a rectangle established by the intervals [- , ]

and [- , ], that is

         ( , ) 0 for | |  and | |
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Two-dimensional sampling theorem:
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2-D Sampling and 2-D Sampling Theorem
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Aliasing in Images: Example

Under-sampling

In an image system, the 
number of samples is fixed at 
96x96 pixels. If we use this 
system to digitize checkerboard 
patterns … 
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Aliasing in Images: Example

Re-sampling
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Aliasing in Images: Example

Re-sampling
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Moiré patterns

• Moiré patterns are often an undesired artifact of images 
produced by various digital imaging and computer 
graphics techniques

e. g., when scanning a halftone picture or  ray tracing a 
checkered plane. This cause of moiré is a special case of 
aliasing, due to under-sampling a fine regular pattern

http://en.wikipedia.org/wiki/Moiré_pattern 
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Moiré patterns
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Moiré patterns

A moiré 
pattern 
formed by 
incorrectly 
down-
sampling the 
former image
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2-D Discrete Fourier Transform and Its 
Inverse
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Properties of the 2-D DFT
relationships between spatial and frequency intervals

Let  and  denote the separations between samples,

then the seperations between the corresponding discrete,

frequency domain variables are given by

1
              

1
and        

T Z

M T

N Z





 

 


 




Computer Vision & Biometrics Lab, Indian Institute of Information Technology, Allahabad

Image and Video Processing10/2/2020

45

Properties of the 2-D DFT
translation and rotation

0 0
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Using the polar coordinates

cos     y=rsin     = cos      = sin

results in the following transform pair:
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Properties of the 2-D DFT
periodicity 

1 2 1 2( , ) ( , ) ( , ) ( , )f x y f x k M y f x y k N f x k M y k N      

1 2 1 2

2  Fourier transform and its inverse are infinitely periodic
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Properties of the 2-D DFT
periodicity 


