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Fundamentals

• Let R represent the entire spatial region 
occupied by an image. Image segmentation is a 
process that partitions R into n sub-regions, R1, 
R2, …, Rn, such that
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Background

• First-order derivative

• Second-order derivative
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Characteristics of First and Second Order Derivatives

• First-order derivatives generally produce thicker edges in 
image

• Second-order derivatives have a stronger response to fine 
detail, such as thin lines, isolated points, and noise

• Second-order derivatives produce a double-edge response at 
ramp and step transition in intensity

• The sign of the second derivative can be used to determine 
whether a transition into an edge is from light to dark or dark 
to light
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Detection of Isolated Points

• The Laplacian
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Line Detection

• Second derivatives to result in a stronger 
response and to produce thinner lines than first 
derivatives

• Double-line effect of the second derivative must 
be handled properly
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Detecting Line in Specified Directions

• Let R1, R2, R3, and R4 denote the responses of the masks in Fig. 10.6. 
If, at a given point in the image, |Rk|>|Rj|, for all j≠k, that point is 
said to be more likely associated with a line in the direction of mask 
k.
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Edge Detection

• Edges are pixels where the brightness function 
changes abruptly

• Edge models
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Basic Edge Detection by Using First-Order Derivative
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Basic Edge Detection by Using First-Order Derivative
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Advanced Techniques for Edge Detection

• The Marr-Hildreth edge detector
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Marr-Hildreth Algorithm

1. Filter the input image with an nxn Gaussian 
lowpass filter. N is the smallest odd integer 
greater than or equal to 6

2. 
1. Compute the Laplacian of the image resulting 

from step1

2. Find the zero crossing of the image from step 
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The Canny Edge Detector

• Optimal for step edges corrupted by white noise.

• The Objective

1. Low error rate

The edges detected must be as close as possible to the true edge

2. Edge points should be well localized

The edges located must be as close as possible to the true edges

3. Single edge point response

The number of local maxima around the true edge should be 
minimum 33
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The Canny Edge Detector: Algorithm (1)
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The Canny Edge Detector: Algorithm(2)
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The Canny Edge Detector: Algorithm(3)
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The gradient ( , ) typically contains wide ridge around 

local maxima. Next step is to thin those ridges.
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The Canny Edge Detector: Algorithm(4)
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The final operation is to threshold ( , ) to reduce 

false edge points.

Hysteresis thresholding: 
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The Canny Edge Detector: Algorithm(5)
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Depending on the value of , the edges in ( , )

typically have gaps. Longer edges are formed using

the following procedure:
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(b). Mark as vali

H NH

NH

T g x y

p g x y

d edge pixel all the weak pixels in ( , )

      that are connected to  using 8-connectivity. 

(c). If all nonzero pixel in ( , ) have been visited go to

      step (d), esle return to (a).

(d). Set

NL

NH

g x y

p

g x y

 to zero all pixels in ( , ) that were not marked as

      valid edge pixels.

NLg x y



Computer Vision & Biometrics Lab, Indian Institute of Information Technology, Allahabad

Image and Video Processing

The Canny Edge Detection: Summary

• Smooth the input image with a Gaussian filter

• Compute the gradient magnitude and angle 
images

• Apply nonmaxima suppression to the gradient 
magnitude image

• Use double thresholding and connectivity 
analysis to detect and link edges 40
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0.04; 0.10; 4 and a mask of size 25 25L HT T    
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0.05; 0.15; 2 and a mask of size 13 13L HT T    
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