
Computer Vision & Biometrics Lab, Indian Institute of Information Technology, Allahabad

Image and Video Processing

Filtering in the Frequency 
Domain-2

1



Computer Vision & Biometrics Lab, Indian Institute of Information Technology, Allahabad

Image and Video Processing

2

2-D Discrete Fourier Transform and Its 
Inverse

2 ( / / )1 1

0 0

IDFT:

1
( , ) ( , )

j x M y NM N

x y

f x y F e
MN

  

 

 

 

 

2 ( / / )1 1

0 0

DFT:

( , ) ( , )

0,1,2,..., 1; 0,1,2,..., 1;

( , ) is a digital image of size M N.

j x M y NM N

x y

F f x y e

M N

f x y

  

 

 

  

 



   







Computer Vision & Biometrics Lab, Indian Institute of Information Technology, Allahabad

Image and Video Processing

3

Properties of the 2-D DFT
relationships between spatial and frequency intervals

Let  and  denote the separations between samples,

then the seperations between the corresponding discrete,

frequency domain variables are given by
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Properties of the 2-D DFT
translation and rotation
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Properties of the 2-D DFT
periodicity 

1 2 1 2( , ) ( , ) ( , ) ( , )f x y f x k M y f x y k N f x k M y k N      
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2  Fourier transform and its inverse are infinitely periodic
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Properties of the 2-D DFT
periodicity 
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Properties of the 2-D DFT
Symmetry 
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Properties of the 2-D DFT
Fourier Spectrum and Phase Angle 
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Example:  Phase Angles
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Example:  Phase Angles and The Reconstructed
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2-D Convolution Theorem 
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1-D convolution 
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An Example of Convolution

Mirroring h 
about the 
origin

Translating 
the mirrored 
function by x

Computing the 
sum for each 
x
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An Example of Convolution

It causes the 

wraparoun
d error

It can be 
solved by 
appending 

zeros
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Zero Padding

► Consider two functions f(x) and h(x) composed of A and B 
samples, respectively

► Append zeros to both functions so that they have the same 
length, denoted by P, then wraparound is avoided by 
choosing

P ≥A+B-1
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Zero Padding

( , )       0 -1  0 -1
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► Let f(x,y) and h(x,y) be two image arrays of sizes A×B and 
C×D pixels, respectively. Wraparound error in their 
convolution can be avoided by padding these functions 
with zeros
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Here 1; 1P A C Q B D     
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Summary
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Summary
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Summary
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Summary
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The Basic Filtering in the Frequency Domain

Why is the spectrum at 
almost ±45 degree  stronger 
than the spectrum at other 

directions?
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The Basic Filtering in the Frequency Domain

1( , ) { ( , ) ( , )}

( , ) is the DFT of the input image

( , ) is a filter function.

g x y H u v F u v

F u v

H u v

 

► Modifying the Fourier transform of an image 

► Computing the inverse transform to obtain the processed 
result
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The Basic Filtering in the Frequency Domain

► In a filter H(u,v) that is 0 at the center of the transform 
and 1 elsewhere, what’s the output image?
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The Basic Filtering in the Frequency Domain
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The Basic Filtering in the Frequency Domain
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Zero-Phase-Shift Filters

1( , ) { ( , ) ( , )}g x y H u v F u v

( , ) ( , ) ( , )F u v R u v jI u v 

 1( , ) ( , ) ( , ) ( , ) ( , )g x y H u v R u v jH u v I u v  

Filters affect the real and imaginary parts equally,

and thus no effect on the phase. 

These filters are called zero-phase-shift filters
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Examples: Nonzero-Phase-Shift Filters

Even small changes in the phase angle can have 
dramatic (usually undesirable) effects on the filtered 
output

Phase angle is 
multiplied by 

0.5

Phase angle is 
multiplied by 

0.5
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Summary: 
Steps for Filtering in the Frequency Domain

1. Given an input image f(x,y) of size MxN, obtain the  
padding parameters P and Q. Typically, P = 2M and Q = 2N.

2. Form a padded image, fp(x,y) of size PxQ by 
appending the necessary number of zeros to f(x,y)

3. Multiply fp(x,y) by (-1)x+y to center its transform

4. Compute the DFT, F(u,v) of the image from step 3

5. Generate a real, symmetric filter function*, H(u,v), of 
size PxQ with center at coordinates (P/2, Q/2)

*generate from a given spatial filter, we pad the spatial filter, multiply the expadded 
array by (-1)x+y, and compute the DFT of the result to obtain a centered H(u,v).



Computer Vision & Biometrics Lab, Indian Institute of Information Technology, Allahabad

Image and Video Processing

30

Summary: 
Steps for Filtering in the Frequency Domain

6. Form the product G(u,v) = H(u,v)F(u,v) using array 
multiplication 

7. Obtain the processed image

8. Obtain the final processed result, g(x,y), by extracting 
the MxN region from the top, left quadrant of gp(x,y)

  1( , ) ( , ) ( 1)x y

pg x y real G u v     
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An Example: 
Steps for Filtering in the Frequency Domain
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Correspondence Between Filtering in the Spatial 
and Frequency Domains (1)

2 2 22

The corresponding filter in the spatial domain 

                    ( ) 2 xh x Ae   

2 2- /2

Let H(u) denote the 1-D frequency domain Gaussian filter

                               ( ) uH u Ae 

1. Both components are Gaussian and real

2. The functions behave reciprocally
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Correspondence Between Filtering in the Spatial 
and Frequency Domains (2)

2 2 2 2 2 2
1 22 2

1 2

The corresponding filter in the spatial domain 

     ( ) 2 2
x x

h x Ae Ae
     

 

2 22 2
1 2/2 /2- -

1 2

Let ( ) denote the difference of Gaussian filter

                  ( )

                   with  and 

u u

H u

H u Ae Be

A B

 

 

 

 

High-pass filter or low-pass filter ?
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Correspondence Between Filtering in the Spatial 
and Frequency Domains (3)



Computer Vision & Biometrics Lab, Indian Institute of Information Technology, Allahabad

Image and Video Processing

35

Correspondence Between Filtering in the Spatial 
and Frequency Domains: Example

600x600
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Correspondence Between Filtering in the Spatial 
and Frequency Domains: Example
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Generate H(u,v)

( , )           0 2  0 2
( , )

0              3 602  3 602
p

h x y x and y
h x y

x or y

   
 

   

( , )           0 599  0 599
( , )

0           600 602  600 602
p

f x y x and y
f x y

x or y

   
 

   

Here (600) (3) 1 602;

        (600) (3) 1 602.

P A C

Q B D

   

   
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Generate H(u,v)

2. Compute the forward DFT of the result in (1)

3. Set the real part of the resulting DFT to 0 to account for 

    parasitic real parts

1. Multiply ( , ) by (-1)  to center the frequency domain filterx y

ph x y 

4.  Multiply the result by (-1) ,  which is implicit when ( , ) 

    was moved to the center of ( , ).

u v

p

h x y

h x y


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Image Smoothing Using Filter Domain Filters: ILPF

0

0

Ideal Lowpass Filters (ILPF)

1    if ( , )
          ( , )

0    if ( , )

D u v D
H u v

D u v D


 



0

1/2
2 2

 is a positive constant and ( , ) is the distance between a point ( , ) 

 in the frequency domain and the center of the frequency rectangle

               ( , ) ( / 2) ( / 2)

D D u v u v

D u v u P v Q     
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Image Smoothing Using Filter Domain Filters: ILPF
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ILPF Filtering Example 
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ILPF Filtering 
Example
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The Spatial Representation of ILPF
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Image Smoothing Using Filter Domain Filters: BLPF

 

0

2

0

Butterworth Lowpass Filters (BLPF) of order  and 

with cutoff frequency 

1
          ( , )

1 ( , ) /
n

n

D

H u v
D u v D



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The Spatial Representation of BLPF
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Image Smoothing Using Filter Domain Filters: GLPF

2 2
0

0

( , )/2

By letting 

                 ( , )
D u v D

D

H u v e









2 2( , )/2

Gaussian Lowpass Filters (GLPF) in two dimensions is given 

                         ( , ) D u vH u v e 
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Image Smoothing Using Filter Domain Filters: GLPF
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Examples of smoothing by GLPF (1)
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Examples of smoothing by GLPF (2)
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Examples of smoothing by GLPF (3)
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Image Sharpening Using Frequency Domain Filters

A highpass filter is obtained from a given lowpass filter 
using

( , ) 1 ( , )HP LPH u v H u v 

0

0

A 2-D ideal highpass filter (IHPL) is defined as

0    if ( , )
                ( , )

1    if ( , )

D u v D
H u v

D u v D


 


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Image Sharpening Using Frequency Domain Filters

2 2
0( , )/2

A 2-D Gaussian highpass filter (GHPL) is defined as

                ( , ) 1
D u v D

H u v e


 

 
2

0

A 2-D Butterworth highpass filter (BHPL) is defined as

1
                ( , )

1 / ( , )
n

H u v
D D u v



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The Spatial Representation of Highpass Filters
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Filtering Results by IHPF
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Filtering Results by BHPF
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Filtering Results by GHPF
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Using Highpass Filtering and Threshold for Image 
Enhancement

BHPF 
(order 4 with a cutoff 
frequency 50)
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The Laplacian in the Frequency Domain

 2 1

The Laplacian image 

( , ) ( , ) ( , )f x y H u v F u v  

2

Enhancement is obtained 

( , ) ( , ) ( , )     -1g x y f x y c f x y c   

2 2 2( , ) 4 ( )H u v u v  

2 2 2

2 2

( , ) 4 ( / 2) ( / 2) )

           4 ( , )

H u v u P v Q

D u v





      

 
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The Laplacian in the Frequency Domain

 

  

 

1

1

1 2 2

The enhanced image 

( , ) ( , ) ( , ) ( , )

           1 ( , ) ( , )

           1 4 ( , ) ( , )

g x y F u v H u v F u v

H u v F u v

D u v F u v







  

  

    
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The Laplacian in the Frequency Domain
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Unsharp Masking, Highboost Filtering and High-
Frequency-Emphasis Fitering

Unsharp masking and highboost filtering

( , ) ( , ) * ( , )maskg x y f x y k g x y 

  
  

1

1

( , ) 1 * 1 ( , ) ( , )

           1 * ( , ) ( , )

LP

HP

g x y k H u v F u v

k H u v F u v





     

  

( , ) ( , ) ( , )mask LPg x y f x y f x y 

 1( , ) ( , ) ( , )LP LPf x y H u v F u v 
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Unsharp Masking, Highboost Filtering and High-
Frequency-Emphasis Fitering

  1

1 2

1 2

( , ) * ( , ) ( , )

0  and  0

HPg x y k k H u v F u v

k k

  

 
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Homomorphic Filtering

     ( , ) ( , ) ( , )f x y i x y r x y   

( , ) ln ( , ) ln ( , ) ln ( , )z x y f x y i x y r x y  

( , ) ( , ) ( , )f x y i x y r x y

= ?

       ( , ) ln ( , ) ln ( , ) ln ( , )z x y f x y i x y r x y     

( , ) ( , ) ( , )i rZ u v F u v F u v 
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Homomorphic Filtering

 

 

   

1

1

1 1

( , ) ( , )

          ( , ) ( , ) ( , ) ( , )

          ( , ) ( , ) ( , ) ( , )

          '( , ) '( , )

i r

i r

s x y S u v

H u v F u v H u v F u v

H u v F u v H u v F u v

i x y r x y





 

 

  

  

 

( , ) ( , ) ( , )

          ( , ) ( , ) ( , ) ( , )i r

S u v H u v Z u v

H u v F u v H u v F u v



 

( , ) '( , ) '( , )

0 0( , ) ( , ) ( , )s x y i x y r x yg x y e e e i x y r x y  
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Homomorphic Filtering

The illumination component of an image generally is 
characterized by slow spatial variations, while the 
reflectance component tends to vary abruptly

These characteristics lead to associating the low 
frequencies of the Fourier transform of the logarithm of an 
image with illumination the high frequencies with 
reflectance.
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Homomorphic Filtering

2 2
0( , )/

( , ) ( ) 1
c D u v D

H L LH u v e  
 
     

  

Attenuate the contribution 
made by illumination and 

amplify the contribution made 
by reflectance

Attenuate the contribution 
made by illumination and 

amplify the contribution made 
by reflectance
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Homomorphic Filtering

0

0.25

2

1

80

L

H

c

D












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Homomorphic Filtering
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Selective Filtering

Non-Selective Filters: 
operate over the entire frequency rectangle

Selective Filters
operate over some part, not entire frequency rectangle
• bandreject or bandpass: process specific bands
• notch filters: process small regions of the frequency 
rectangle
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Selective Filtering: 
Bandreject and Bandpass Filters

( , ) 1 ( , )BP BRH u v H u v 
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Selective Filtering: 
Bandreject and Bandpass Filters
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Selective Filtering: 
Notch Filters

Zero-phase-shift filters must be symmetric about the origin.
A notch with center at (u0, v0) must have a corresponding 
notch at location (-u0,-v0).

Notch reject filters are constructed as products of highpass 
filters whose centers have been translated to the centers of 
the notches.

1

-

                         ( , ) ( , ) ( , )

where ( , ) and ( , ) are highpass filters whose centers are 

at ( , ) and (- , - ), respectively.

Q

NR k k

k

k k

k k k k

H u v H u v H u v

H u v H u v

u v u v






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Selective Filtering: 
Notch Filters

1

-

                         ( , ) ( , ) ( , )

where ( , ) and ( , ) are highpass filters whose centers are 

at ( , ) and (- , - ), respectively.

Q

NR k k

k

k k

k k k k

H u v H u v H u v

H u v H u v

u v u v







1/2
2 2

1/2
2 2

( , ) ( / 2 ) ( / 2 )
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k k k
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D u v u M u v N v

       

       

   

3

2 2
1 0 0

A Butterworth notch reject filter of order n

1 1
( , )

1 / ( , ) 1 / ( , )
NR n n

k k k k k

H u v
D D u v D D u v 

   
    

       

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Examples: 
Notch Filters 
(1)

0

A Butterworth notch 

reject filter D =3 

and n=4 for all 

notch pairs
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Examples: 
Notch Filters (2)



Computer Vision & Biometrics Lab, Indian Institute of Information Technology, Allahabad

Image and Video Processing

80


